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Given an exact category E, we associate to it a fibration c above IE such that, for each object 

X of IE, the fiber c[x] is again exact. If, moreover, A is an internal abelian group in E, it deter- 

mines a family of abelian groups A, in the fibres c[x], such that the group H’(E,A) is the colimit 

of the H”(c[x],.~,). This remark allows us to define iteratively H”+‘(E,A) as the colimit of the 

H”(c[x],A,). These groups are shown to have the property of the long cohomology sequence. 

When E = Ab, the construction coincides, up to isomorphism, with Yoneda’s classical description 

of Ext”. When E=Grp, it coincides with the cohomology groups of a group in the sense of 

Eilenberg-Mac Lane. 

Introduction 

An interpretation of the first and second cohomology groups of a group, in the 

sense of Eilenberg-Mac Lane [17], was given in [2], in terms of connected compo- 

nents of a lax limit and a 3-dimensional lax limit. It was just a remark, bringing a 

geometrical flavour to the abstract formulae of crossed homomorphisms, principal 

homomorphisms and factor sets. At that time, the investigation of general n-cate- 

gories seemed to be premature, making a similar interpretation for higher cohom- 

ology groups impossible. Just such an interpretation is the aim of this paper. 

Indeed, since that time, much work has been done in this area. First there were 

the papers of A. and C. Ehresmann [15] about n-fold categories, which are even 

more general than n-categories, and a paper on their recent use in K-theory by 

Shimakawa [28]. There were also the papers by Brown and Higgins [9-l I], con- 

cerning the generalization of the Seifert-Van Kampen theorem: an important step 

of their work consisted in the proof of the equivalence between the category of 

crossed complexes and the category of w-groupoids. Finally, there was the work of 

Loday [25] in homotopy theory, using an equivalent of internal n-fold categories in 

the category Grp of abstract groups. 

All this work seemed to be sufficient reason to undertake the systematic investiga- 
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tion of internal n-categories [3,6-81, a different approach being taken and parallel 

progress being made by Street and the Australian school [29], and also to return to 

the problem of realizing cohomology groups (and not only abstract groups) by 

means of n-categories or, better, n-groupoids. 

In order to see this, let us remember that, if 1E is a Barr exact category and A an 

abelian group in 1E, the group H”( IE,A) is defined as the group lE( LA) of global 

elements of A, and the group H’( [E, A) as the group of connected components of 

the monoidal groupoid Tors(fE,A) of A-torsors, that is to say, principal A-actions 

on objects of IE having a global support (see for instance [l]). Though there were 

other presentations of higher order cohomology groups, for instance by means of 

special kinds of simplicial Kan fibrations by Duskin [ 141 and Glenn [19], such a 

presentation of cohomology groups by means of group actions, in the usual sense, 

actually stops at level one with the well-known six-term exact sequence. 

Now, let us denote by Grd [E the category of internal groupoids in IE and by c the 

forgetful functor c: Grd [E + [E, associating to each groupoid X, its object of ob- 

jects X0. It is in fact a fibration, whose fibers c[M], for each object A4 in [E, are 

again Barr exact. Furthermore, if A is an abelian group in 1E, an abelian group being 

a group in the category of groups in IE, it obviously determines an abelian group 

K,(A) in the fiber c[l] and therefore, by change of base along the terminal map 

M-t 1, an abelian group M*(K,(A)) in each fiber c[M]. The starting point of this 

work is the following remark: the abelian group H’( [E, A) is nothing but the colimit 

of the abelian groups H’(c[hrl],M*(K,A)), the objects Jr4 having a global support. 

This point is simply based on the fact that any functor between internal groupoids 

in IE has an associated discrete fibration. 

It is therefore natural to investigate whether the colimit of the group H’(c[M], 

M*(K,A)) (which are the Hi of the fibers of c) is, in the classical examples, a 

realization of the second cohomology group, and, more generally, whether that is 

the case for the higher order groups (let us denote them beforehand by H”+‘(E,A)) 

defined iteratively by the colimits of the H”(c[M],M*(K,A)) (which are the H” of 

the fibers of c). 

Now, what are the objects of H*(E,A)? According to our initial remark, they 

are described by classes of internal groupoids in the fibers of the fibration c. That 

is to say, strictly speaking, internal 2-groupoids in IE. More generally, the objects 

of H”(E,A) are described by classes of what appear to be exactly internal n-group- 

oids in [E. When [E=A is an abelian category, this description of the H” coincides, 

up to isomorphism, with Yoneda’s classical description of Ext”. There is, indeed, 

another possible denormalization theorem for abelian chain complexes [4]: that is, 

for each integer n, a natural (in n) equivalence between the category n-Grd A of 

internal n-groupoids in A and the category C”(A) of abelian chain complexes of 

length n. Similarly, when [E is the category Grp of abstract groups, this description 

is equivalent to those given by Holt [22] and Huebschmann [23] of the homology 

groups of a group in the sense of Eilenberg-Mac Lane, by means of crossed n-fold 

extensions. 
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The aim of this paper, summarized in [5], is thus to describe precisely these groups 

H”(lE,A) and to show that they have the property of the long cohomology se- 

quence. The introduction of n-groupoids in the realization of cohomology groups 

does not seem to be a mere gadget. On the one hand, it appears to be the most direct 

way to extend the classical description of the first cohomology group by means of 

principal actions to the higher order cohomology groups. On the other hand, while, 

in the abelian situation, the usual Dold-Kan equivalence between abelian chain 

complexes and simplicial abelian groups does not strictly exchange chain homo- 

topies with simplicial homotopies, the new equivalences between C”(A) and 

n-Grd A do strictly exchange chain homotopies with what is known as (higher order) 

pseudonatural transformations. In this sense, the two notions of n-complexes and 

internal n-groupoids seem to be more closely connected than the notions of com- 

plexes and simplicial objects. 

Main definitions and results 

Now to be more explicit and before going into detail, let us recall the main defini- 

tions concerning internal n-groupoids and let us introduce briefly the cohomology 

groups. 

A. Internal n-categories and n-groupoids 
Let V be a left exact category. An internal category in V is a diagram X, in a/, 

such that m2X, is the vertex of the pullback of do along dl , satisfying the usual 

unitary and associativity axioms. An internal functor is just a natural transforma- 

tion between such diagrams. Let Cat V denote the category of internal categories 

in V and ( ). the forgetful left exact functor Cat V + V associating X0 to Xi. It has 

a fully faithful right adjoint G,. 

An internal category is discrete when so is an isomorphism. It is a groupoid if the 

following diagram is a pullback: 

4 
mX, w m2X, 

&l t----mX 
dl 

1. 

Let Grd V denote the full subcategory of Cat V whose objects are the internal 

groupoids and again ( )c the forgetful functor. Whence the following situation: 

( )a 
GrdV; w. 

Cl 
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Now suppose we are in the general similar situation (called the basic situation) 

c 

w I w 
d 

with V left exact, c left exact and d a fully faithful right adjoint of c. We denote 

by Cat,!,/ the full subcategory of Cat V whose objects, called c-discrete categories, 

are the internal categories in V mapped by c on a discrete category in W. The latter 

is the case if and only if c(se) is an isomorphism. Denote by Grd,V the full cate- 

gory of Cat,V whose objects are groupoids. Let c,, : Grd,.V + V be the forgetful 

functor. It is left exact and has a fully faithful right adjoint G,, given for any 

object I/ in V by the kernel equivalence relation of V+ dcV: 

Consequently we are again in the basic situation: 

GJ 
Grd, W -w 

Gl 

and in the position to iterate the process. 

Let us denote the nth iterated step of this basic construction in the following way: 

C,? I 
n-Grd,.V 1 (n - I)-Grd,.V. 

G, 

An object of n-Grd,V is called a c-discrete n-groupoid, and a morphism an inter- 

nal n-functor. Now starting from a left exact category IE and from the following 

basic situation: 

where 1 is a terminal object in E, we obtain the following tower 

( ),,+I ( )I ( kl 
. . . n-Grd E 1 

G,, 
(n-1)-Grd IE . . . 2-Grd E T Grd E T E S 11 

whose nth term is called the category of internal n-groupoids in IE. 

B. The first cohomology group relative to c 
Suppose we are again in the basic situation with, moreover, c Barr-exact [4] 

meaning that each c-discrete equivalence relation in V is effective and has a univer- 
sal cokernel. Let A be an abelian group in a/. A left A-object is well known to be 

an object I/ in V, together with a left action u : A x V- V with u. [0, V] = V and 

u * (A x u) = u. (+ x V), where I/ denotes l,, for short, a morphism between 
A-objects being a morphism which commutes with the given actions. Let LV[A] 

denote the category of left A-objects in V. 
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Now let K,(A) be the following internal groupoid (actually a group) in V: 

PO -a 

K,(A): 1 A A d A XA. 
f 

p1 

It is well known that the category LV[A] is equivalent to the category FD/K,(A) 

of internal discrete fibrations above K,(A), this equivalence associating to (V, v) the 

following internal discrete fibration: 

Axv 

F1(v,o): v -AxV+=%4xAxv 

K,(A) : 1+_-_-_ =A v AXA. 

Later on we shall often identify the left A-object (Ku) with the discrete fibration 

fi(K 0). 

Definition 1. The group A is said to be c-trivial if c(A) is equal to 1, or equivalently 

if K,(A) is c-discrete. 

Proposition 2. If A is c-trivial, then the groupoid Fl(V, v) is c-discrete. 

Proof. The morphism c(pv) is the inverse of c[O, V] since c is left exact and A 
c-trivial. 0 

Now this groupoid being c-discrete and FO(K o) = V, there is an internal functor 

~71 : F,(K u> -+ G,W. 

Definition 3. The left object (V, u) is said to be c-principal when this functor p, is 

an isomorphism, or equivalently when the following map in V: 

[u,pv] : A x V+ Vx, V 

is an isomorphism. 

Let c-PV[A] denote the category of c-principal A-objects in V. 

Definition 4. An object T/in V is said to have a global c-support if the map V+ dcV 
is a regular epimorphism. 

Definition 5. A c-torsor is a c-principal A-object (V, u) with V having a global 

c-support. 
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Given a c-trivial abelian group A, we define Tors(c,A) as the full subcategory of 

c-PV[A] whose objects are the c-torsors. Now, the functor c being Barr-exact, there 

is on Tors(c,A) a tensor product, defined exactly as in the classical situation. 

The group of connected components of Tors(c,A) is denoted H’(c,A) and called 

the first cohomology group relative to c. 

C. The higher order cohomology groups of c 
If c is Barr-exact, then co is again Barr-exact (see [3]). The object K,(A) is actually 

an abelian group in Grd,V, since, A being abelian, the morphism + : A xA +A 

determines an internal functor + I : K,(A) x K1 (A) + K1 (A). 

Moreover, this abelian group is clearly co-trivial. Consequently we are again in 

the previous situation with co : Grd,V + V Barr-exact and K,(A) a co-trivial abelian 

group in Grd,V. So we have again a monoidal category Tors(cO,KI(A)). 

Definition 6. A c-discrete groupoid Xi is said to be c-aspherical when Xi has a 

global co-support and X0 a global c-support. 

Let 2-Tors(c,A) be the full subcategory of Tors(c,,K,(A)) whose objects (Xi, xi) 

are such that Xi is c-aspherical. The tensor product of Tors(co,K,(A)) is stable 

on 2-Tors(c,A). The group of connected components of 2-Tors(c,A) is denoted 

H2(c,A) and called the second cohomology group relative to c. 

More generally, the functor c,_ 1 : n-Grd,V -+ (n - 1)-Grd,V is again Barr exact. 

We have, in n-Grd V, a c,_ i-trivial abelian group defined by the formula K,(A) = 

K,(K-,(A)). 

Definition 7. An object X,, of n-Grd,V is said to be c-aspherical if X, has a global 

c,-,-support and, moreover, X,_, is c-aspherical. 

Let (n + 1)-Tors(c,A) be the full subcategory of Tors(c,- ,,K,(A)) whose objects 

(X,,x,) are such that X, is aspherical. The tensor product of Tors(c,_,,K,(A)) is 

stable on (n + I)-Tors(c,A). The group of connected components of (n + 1)-Tors(c,A) 

is denoted H”“(c,A) and called the (n + 1)th cohomology group relative to c. 

This paper will be mainly devoted to show that these H”(c,A) have the property 

of the cohomology long exact sequence. 

Here is the organization of this paper: 

1. Internal n-groupoids; 

2. The cohomology groups relative to a fibration; 

3. The exactness property of the long cohomology sequence; 

4. The classical examples. 

1. Internal n-groupoids 

In this section, we shall recall the main results about the basic situation and the 

internal n-groupoids. 
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I. I. The basic situation 

A functor c, together with the whole basic situation, will be called a left exact 

fibered reflection [3], such a definition being justified by the fact that c is just a left 

exact functor and a fibered reflection that is, up to equivalence, a fibration with a 

terminal object in each fiber. 

A c-Cartesian morphism is nothing but a morphism f: I/-+ I/’ in ‘V such that the 

following diagram is a pullback: 

f 
I/ p I/’ 

dcV - dcV’. 
dcf 

The class c-Cart of c-Cartesian morphisms is obviously stable under pullback and 

composition. It contains the isomorphisms. Furthermore, if g and g. f are in c-Cart, 

then f is in c-Cart. Finally, a morphism dh, for any h in VV, is trivially c-Cartesian. 

Now given a class of morphisms E in V, let us denote by 8’ the class of mor- 

phisms g in V, satisfying the diagonality condition [12,18,30]: for any commutative 

square 
s-x 

/’ 
/ 

g 
/ I ! / f 

/ 
/ 

/ 

T-Y 

with f in E, there is a unique dotted arrow making the two triangles commutative. 

The class (c-cart)’ is just the class c-Inv of c-invertible morphisms, that is mor- 

phisms whose image by c is invertible. The class c-Inv is stable under pullback and 

composition. It contains the isomorphisms. Furthermore, if any two of the three 

morphisms f, g and g. f are in c-Inv, then the third one is in c-Inv. 

It is clear that a morphism which is at the same time c-Cartesian and c-invertible, 

is an isomorphism. Any morphism f in V has a unique, up to isomorphism, decom- 

position f =fc. f i with f i c-invertible and f’ c-Cartesian, given by the following 

diagram in which the square (*) is a pullback: 

f 
v ’ V’ 

f’ 

.(*I 

f’ 

Y! J 

dcV - dcV’. 
dcf 

Finally, a commutative square with a pair of parallel edges in c-Cart and the other 

one in c-Inv is certainly a pullback. 
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Example. In the case IE left exact and c = ( >O : Grd E + E, a ( ),-Cartesian mor- 
phism is an internally fully faithful functor and a ( ),-invertible one is an internal 

functor which is ‘bijective on objects’. 

1.2. Barr-exact fibered reflection 

The fibered reflection c is said to be Barr-exact if, moreover, any c-invertible 

equivalence relation in V has a quotient (a coequalizer making this equivalence rela- 

tion effective) which is universal. Clearly such a quotient is c-invertible. 

Remark. A fibered reflection is Barr-exact if and only if its associated fibration (up 

to equivalence) has its fibers and its change of base functors Barr-exact [3]. 

Example. When E is Barr-exact and left exact, then the functor ( )c : Grd lE -+ E is 

a Barr-exact fibered reflection. 

An object I/ in V is said to have a global c-support when the terminal map in the 

fiber: I/+ dcV is a c-invertible regular epimorphism. It is clear that, if f: I/-+ V’ is 

c-Cartesian and V’ has a global c-support, then V has a global c-support. Further- 

more, c being left exact, the product of two objects U and V with global c-supports 

has a global c-support. 

Definition 8. A morphism f: V+ V’ in V is called c-faithful if its c-invertible part 

f’ is a monomorphism and c-full if f i is a regular epimorphism. 

Let Z denote the class of c-full morphisms. It is stable under pullback and com- 

position. It clearly contains c-Cart. 

Thus an object V in V has global c-support if and only if its terminal map in V, 

V-t 1, is c-full. Consequently, whenf: U + V is in 2 and V has a global c-support, 

then U has a global c-support. 

Example. As expected from this terminology, a ( ),-faithful morphism in Grd [E 

(resp. ( )O-full) is simply an internally faithfu1 (resp. full) functor. 

1.3. The c-discrete groupoids 

Let us consider now the following fibered reflection: 

co 
Grd, W I w. 

GI 

There is again a canonical decomposition dealing with co-invertible and co-Cartesian 

morphisms. 

Now, if c is Barr-exact, then co is again Barr-exact [3]. We shall say that a c-dis- 
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Crete groupoid X1 is c-aspherical when Xi has a global co-support and X0 a global 

c-support. If fr :X, -+ Y, is a morphism between aspherical c-groupoids, then the 

vertex 2, of its canonical decomposition, 

Xl 
fii fi’ 

- z, - Yl) 

is aspherical: Zr has a global co-support since ft is Cartesian and Yi has a global 

co-support. Moreover, Z,, being isomorphic to X0, has a global c-support. 

The class 2, 
There is, in Grd,V, a class of morphisms which will be very important for us, 

namely the class 2, of morphisms f, : Xl + Y, such that f, is CO-full and fO : X0 + Y, 

is c-full. This class 2, is stable under pullback and composition. It contains the iso- 

morphisms. 

A c-discrete groupoid Y, is then aspherical when its terminal map Y, + 1 is in Cl. 

Consequently, if fi :X1 -+ Y, is in zl, and Y, is aspherical, then X, is aspherical. 

At last, it is easy to check that if fi is in 2’, , then mfl : mX, + mYr is again c-full. 

The functor x0 
Actually the functor co has also a left adjoint dis, where dis V is the c-discrete 

groupoid with every structural map equal to lV. When c is Barr-exact, this functor 

dis has itself a left adjoint rro: Grd,V-+V, which is a fibered reflection (see [7]) 

(obviously, no longer left exact). 

1.4. The discrete fibrations and the final functors 

From now on, we shall suppose c Barr-exact. Besides the co-Cartesian co-invertible 

decomposition, there is in Grd,V another significant factorization system. 

Let us recall that an internal functor fi : Xi --f Y, is said to be a discrete fibration 

when the following square is a pullback: 

mf1 
mX, - mY 1 

x0 - 
fo 

Y 0. 

Let DF denote the class of discrete fibrations. It is stable under pullback and com- 

position. It contains isomorphisms. If g, . f, and g, are in DF, then fi is in DF. Any 

functor dis f is a discrete fibration for any f in V. A functor in DF’ is called final. 

When E is left exact and Barr-exact, it is shown in [6] that in Grd E every functor 

has a unique, up to isomorphism, factorization f, =k, . h, with k, in DF and h, 
final. Furthermore, the final functors are stable under pullbacks along a discrete 

fibration. It is possible to check that exactly the same construction and the same 

result hold in Grd,V when c is a left exact and Barr-exact fibered reflection. 
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Moreover, it is essential for us that this decomposition is stable under product. 

Now, if f: X-t Y is c-Cartesian in V, then G, f: G,X+ G, Y is a discrete fibra- 

tion in Grd,V. Conversely, when G,f: GtX--+ G, Y is a discrete fibration and the 

objects X and Y have a global c-support, then f is c-Cartesian (see [6, Lemma 41). 

If f is c-invertible, then G, f is final if and only if X and Y have the same c-sup- 

port. In particular, G, f is final as soon as X and Y have a global c-support and f 
is c-invertible. Finally, if a morphism f, : GiX-t Yt is final, then there exists a 

c-invertible morphism f: X-+ Y such that fi =G, f. When, moreover, X has a 

global c-support, this Y has itself a global c-support. 

On the other hand, the fibered reflection rcO determines also a factorization sys- 

tem. It is shown in [6] that no-Cart CDF and consequently DFlC rce-Inv. More 

precisely, it is possible to check that: 

DF’ = no-Inv fl c,-Full. 

1.5. The universal representor for natural transformations 

It is well known that the category Cat V is actually underlying a 2-category. But, 

when the category V is left exact, this higher order structure, which will appear to 

be extremely important for the exactness property of the long sequence, can be en- 

tirely represented by 1-morphisms [20]. Indeed, for any category X, (resp. group- 

oid) there is a category (resp. groupoid) Corn X, together with two functors 

such that any internal natural transformation 

Yl --7 
- xl 

can be represented by a unique functor Y, + Corn Xi. 

If X, is c-discrete, then Corn X, is c-discrete. 

Actually, there is a very strong connection between this 2-categorical structure 

and the fibration c, : Grd,W + V which exempts us from further description. 

Proposition 9. A c-discrete category X, is a c-discrete groupoid if and only if (~1 
(resp. TV) : Corn X, -+X1 is c&artesian above d, (resp. d,) : mX, +X0. 

Proof. See [7, Proposition 18 and Corollary]. 0 

This construction Corn clearly extends to a left exact functor Corn : Grd, V -+ 

Grd,V and to natural transformations o1 and ri. Furthermore, Com(Gi V) is 

isomorphic to G,(Vx, V). It is clear from Proposition 9 that Corn preserves the 

co-Cartesian morphisms. 
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When c is Barr-exact, if X, is aspherical, then ComX, is aspherical. Further- 

more, if f, :X, + Y, is in zi, then Comfi is in E:, . 

1.6. The c-discrete n-groupoids 

From the fact that the following fibered reflection: 

cn- I 
n-Grd,V 1 

G, 
(n - 1)-Grd, V 

is again Barr-exact, we have also at this level, besides the c,_i-invertible c,_,- 

Cartesian decomposition, the final-discrete fibration decomposition. We have again 

a functor 

n, _ , : n-Grd, V --f (n - 1)-Grd, V, 

left adjoint to the functor dis. 

The aspherical objects and the class Z,, 
The notion of aspherical objects in n-Grd,V is defined by induction from the 

notion of aspherical objects in Grd,V: 

A c-discrete n-groupoid X, is said to be c-aspherical if it has a global c,-i- 

support and X,, _ , is c-aspherical. Then if X, + Z,! --f Y, is the canonical decomposi- 

tion off, associated to the fibration c,_ 1 and if X, and Y, are c-aspherical, then Z, 

is c-aspherical: it has a global c,_ i-support since the right part is c,_ i-Cartesian 

and Z,_, is c-aspherical since the left part is c,,_ i-invertible. 

In the same way, there is a class & defined by induction from zc,: an n-functor 

f, : X,, + Y, is in Z;, if it is c, _ r-full and f, _ , is in L’n ~, . The class Z;, is stable under 

pullback and composition. It contains isomorphisms. 

An object Y, is then aspherical when its terminal map Y, + 1 is in &. Conse- 

quently, if f, :X, + Y, is in 2” and Y, is aspherical, then X,, is aspherical. 

Now cs, : Corn X, --f X,, being c,_i-Cartesian and its image by ( ),_ 1 being 

do:mX,,+X,_,, that is a c,, _ 2-invertible split epimorphism, then a, is in &. Con- 

sequently, Corn X, is aspherical if X, is aspherical. Furthermore, if f, : Y, -+ Y, is in 

&,,, then Corn f, is in E,,. 

2. The cohomology groups relative to c 

2.1. The category Tors(c, A) 

Now let A be a c-trivial abelian group in V (c(A) = 1) and let LV[A] be the cate- 

gory of left A-actions in V. 

Proposition 10. If (V’, v’) is a left A-object and f: V+ V’ is a c-Cartesian rnor- 
phism, then there is a unique Ieft A-action v on V such that f is equivariant. If 
(V’, v’) is c-principal (resp. a c-torsor), then (K v) is c-principal (resp. a c-torsor). 
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Proof. Let us consider the following diagram: 

The two preceding squares being pullbacks, there is a unique u : A x V-t V such 

that f. IJ = u’. A x f, obviously satisfying the left action axioms. Moreover, if (V’, u’) 

is c-principal (that is, the lower row is a kernel pair), then the upper row is a kernel 

pair and (Ku) is c-principal. If furthermore I/’ has a global c-support, then since 

f is c-Cartesian, I/ has a global c-support. El 

Corollary. The category LW [A] admits pullbacks along c-Cartesian equivariant 
morphisms. 0 

Proposition 11. Every equivariant morphism f between two c-torsors is c-Cartesian. 

Proof. The internal functor F,(f) : Fl (K u) + Fl (V’, u’) determined by f is a discrete 

fibration since fi(V’,u’) and F,(f).f,(V’,u’) (which is f,(V,u)) are discrete fibra- 

tions. Now (Ku) and (V’,u’) being c-principal, Fl(f) is equal to G,(f): G,(V)+ 
G,(V’) and, as a discrete fibration between c-discrete equivalence relations, is rco- 

Cartesian [6]. Furthermore, V and V’ having global c-supports, f is c-Cartesian. 0 

Remark. This result is the fibered version of the well-known classical result accor- 

ding to which an equivari -tt map between two ordinary torsors is invertible. 

2.2. The categories Tors(c, A) and A-Cat, 

Let A be an abelian group in V. Let us denote by DF/KtA the category of dis- 

crete fibrations over K, A and by Grd, V/K, A the usual category of morphisms of 

Grd,V with codomain K,A. The inclusion DF/K,A + Grd, V/K,A determines an 

embedding j:LV[A] + Grd,V/K,A which has a left adjoint ql, given by the 

canonical final-discrete fibration factorization 

K,A. 

Moreover, if X1 = GiX, then (I,v, being final) we have t+~t = G,I,u and Y, = Gt Y with 

v/ c-invertible, X and Y having the same c-support. In particular, if X has a global 

c-support, then Y has a global c-support. So let us denote by A-Cat, the full sub- 

category of G,/K,A whose objects (U, u,), called A-categories, are such that U has 
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a global c-support. Then the following restriction of the previous embedding (again 

denoted by the same symbol): 

j : Tors(c, A) -+ A-Cat, 

admits a left adjoint (again denoted by qr), 

Consequence. The underlying set of the group H’(c,A) can be equally described as 

the connected components of Tors(c,A) and as the connected components of 

A-Cat,. The following section will be devoted to the investigation of a monoidal 

structure on A-Cat,, giving rise to the same group structure on H’(c,A). It will 

appear much simpler than the one on Tors(c,A). 

Proposition 12. The functor q’l : A-Cat, + Tors(c, A) is a fibered reflection, whose 
PI-Cartesian morphisms f: (U, u,) 4 (K v,) are such that f is c-Cartesian and whose 
qyinvertible morphisms are such that f is c-invertible. 

Proof. Let us consider the following diagram, where the square is a pullback and 

g, a discrete fibration: 

hl 
Xl - T 1 

WI I I VI 

hl 
Y, - z 1 

Pl(fl) IJ gl 

K,A. 

Then hl is a discrete fibration, thus I+V~ is final (since I+V~ is final) and g, = p,(g, a t,~r). 

Now if X, = GX, Yr = G, Y, Z, = Gr Z, X, Y, Z having global c-supports, then 

I,V, = G,I,v, h, = G,h, v1 = G,I,P and 5, = G, h. Moreover, h, being a morphism in 

Tors(c, A), is c-Cartesian. So h is c-Cartesian and T has a global c-support. Thus 

fi: (T, g,. G, I,V) + (X,fi) is the Cartesian map above h : (Z, gr) + (Y vl(fi)). 
Now a morphism k : (U, u,) --t (V v,) is p,-Cartesian if and only if the following 

square is a pullback: 

Glk 
G,U’ G,V 

K,A. 
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But E, being a morphism of c-torsors, is c-Cartesian. Then, if the square is a pull- 

back, k is c-Cartesian. Conversely, if k is c-Cartesian, then the square is a pullback, 

being the image by G, of a square in V having the pair of parallel edges (k,@ 

c-Cartesian, and the pair (I,u, x) c-invertible. 

The morphism k in A-Cat, is y?,-invertible when E is invertible. Now if I,U and 

x are c-invertible, then k is c-invertible. Conversely, if k is c-invertible, then 

G,k is final and the canonical decomposition of U, is, up to isomorphism, 

qi(v,). GI(x. k). Consequently, k is vi-invertible. 0 

Remark. The previous terminology and notation concerning A-Cat, come from 

the following fact: when V is the category Set of sets and W is Ii, an abelian group 

can be trivially viewed as a discrete category endowed with a closed monoidal struc- 

ture. Now an A-category in the previous sense is nothing but a non-empty category 

enriched in this closed monoidal structure. 

2.3. The symmetric monoidal structures on Tors(c, A) and A-Cat, 

If A is an abelian group in a left exact category a/, then V/A has a canonical 

monoidal symmetric structure whose unit is 0 : 1 -+ A and the tensor product is given 

by the following formula: if (U, U) and (VT U) are in V/A, then (U, U) 0 (K u) is 

(Uxl/,+~uxu): 

A< 
+ 

AxA. 

This tensor product is clearly associative and symmetric (A being abelian). 

Furthermore, for each (U,u), the following commutative diagram: 

A 
uxu- u- 1 

AxA-A 

determines two morphisms in V/A, 

(U, u) 0 (U -u) + (U 0) + (LO). 

Now in the basic situation and when A is a c-trivial abelian group, the functor d 
being left exact, the previous tensor product is stable on d/A. 

Let us denote by H’(c,A) the group of connected components of d/A. 
In the same way the category G,/K,(A) has a tensor product, which is stable on 

A-Cat, since the objects with a global c-support are stable under product. 
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Let us now consider a monoidal category [D with unit Z and tensor product 0, 

and a category C with an embedding j: C + lD having a left adjoint p. We shall 

denote by q : 1, -je v, the natural transformation. 

Proposition 13. Zf, for each pair (D,D’) of objects of [D the morphism q(qD 0 ~0’) 
is an isomorphism, then there is a canonical monoidal structure on 6, defined by 
C@C’=q(jC@jC’) and having J=p(Z) as unit. 

Proof. Let us sketch for instance the associativity axiom: 

C@ (C’@ C”) = q( jC@ j(C’@ C”)) = qr( jC@ jq$ jC’@ jC”)) 

= p( jpjC@ j& jC’@ jCn)) 2. q( jC@ (jC’@ jCn)) 

= qr((jC@jC’)OjC”). 0 

A monoidal functor between two monoidal categories (D, 0) and ([D’, 0’) is a, 

functor f: D + D’ together with a morphism v I : I’+ f (I) and a natural transforma- 

tion v, 

~D,D,:~(D)O’~(D’)-f(DOD’) 

satisfying the obvious coherence conditions. It is called strict when vI and v are 

isomorphisms. 

It is then clear that v, together with 

~I(~D@~D’)-‘:~YD&oD’+~(D@D’) 

is a strict monoidal functor and that j together with 

q(jC@jC’): jC@jC’-j(C@C’) 

is a monoidal functor. 

Now taking j to be the following functor: 

j : Tors(c, A) + A-Cat, 

we have the following corollary: 

Corollary. There is, on Tors(c,A), a monoidal structure such that cpl is a strict 
monoidal functor. 

Proof. Let 

and 

GIV/ 9l(fl) 
G,X - GIY - K,(A) 

GX (DI (&?I) 
GIS - G,T - K,(A) 

be the canonical decompositions off, and g,, Now let us consider the following 

diagram: 
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G(VXK) 
G,(YxT) f-------- G,(XxS) 

I/ I/ 
GIYxGIT 7 

K,A xK,A. 

The decomposition being stable under products, G,(y/x x) is final and conse- 

quently is vi-invertible. q 

Remark. A simple diagram chasing argument shows that this tensor product on 

Tor(c,A) coincides with the usual tensor product of left A-objects, as defined, say, 

in [l]. In particular ~~(1, 0) = (A, +), the canonical action on A by itself. 

Consequence. The group H’(c,A) can be equally described as the group of con- 

nected components of Tors(c,A) and as the group of connected components of 

A-Cat,. 

2.4. The functor K, and the unit of the monoidal category Tors(c, A) 

Before going further, let us say a little more about K,(A). When A is c-trivial, 

it is clear that K,A is the cokernel in Ab(Grd,V) of the inclusion IC~A : dis A )-+ 
G,A: 

0-disAwG,A-K,A--+O. 
KIA &IA 

This is a straight definition for K,A, which is immediately seen to be a co-trivial 

abelian group. Now the kernel of EVA being discrete, elA is a discrete fibration, 

and, A having obviously a global c-support, EVA is thus associated with some 

c-torsor. On the other hand, the following diagram commutes: 

1 
< Gil=1 

G1:\G(o)/ 0 

K,(A) 

and 0: 1 --f A being c-invertible, G,(O) is final. Consequently, &,A is v,i(l,O). 

On the other hand, the construction K, clearly extends to a functor from the 

category Ah,(V) of c-trivial abelian groups in V to the category Ab,(Grd,V) of 

co-trivial abelian groups Grd, V. 

Proposition 14. The functor K, is additive. Furthermore, it is an equivalence of 
categories Ah,(V) + Ab,..(Grd,V). 
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Proof. The additivity property is clear. Now let Ai be a CO-trivial abelian group in 

Grd,V. Then A0 = 1. The inverse equivalence is given by mAl which is clearly a 

c-trivial abelian group in V since Al is in Grd,V. 0 

2.5. The usual first cohomology group 

Let E be a left exact and Barr-exact category, with a given abelian group A in lE. 

This abelian group A is e-trivial with respect to the following basic situation: 

e 
E I II. 

It is clear that H’(e, A) = E(1, A) is the usual H”( E, A). The group H’(e, A) described 

by means of A-torsors is just the usual H’( E, A). 
Now let us consider the functor ( ),,: Grd IE -+ IE. It is a fibration whose fibers 

are left exact and Barr-exact. The abelian group K,(A) is in the fiber above 1. 

Given an object X in E, it determines by change of map along the terminal map 

X+ 1 an abelian group X*(K,(A)) in the fiber above X. This group is nothing but 

K,(A) x G,X. Now a global element of this group in the fiber above X is simply a 

functor 

GIX+K,(A)xG,X 

whose second projection is necessarily the identity. Thus 

H”(( )o[XI,X*(KI(A))) = Grd UGXKlA); 

this determines clearly a functor Eop + Ab. 

Let gl E denote the full subcategory of E whose objects have a global support and 

by 8 the restriction of the preceding functor 19 : (gl lE)Op -+ Ab. 

Proposition 15 (H’ as a colimit of Ho’s). The group H’(E,A) is the colimit of 13. 

Proof. Let U: Ab --f Set denote the forgetful functor. 

Then A-Cat, is nothing but the Grothendieck category associated with U. 0. 

Consequently, H’(E, A) = rc,(A-Cat,) is, as a set, the colimit of U. 0. 

The following commutative diagram: 

GA 
G,X - G,Xx GIX 

.sl+hl ! I gl xh, 

KIA - K,A xK,A 
+I 

insures us that the projections 

6’(X)-H’(E,A) 

are group homomorphisms, for every X in gl lE. 
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Finally, the existence of products in gl (E gives us a connectivity property in 

(gl E)Op which implies that H’( E,A) is actually a colimit in Ab. 0 

2.6. The group extension functor 

If h : A -+ A’ is a group homomorphism in V, then the functor V/h : V/A + V/A’ 
is clearly a strict monoidal functor. 

When A and A’ are c-trivial, the restriction of Grd,V/K, h to A-Cat, factors 

through A/-Cat,. We shall denote it by h, for short: 

h : A-Cat, + A’-Cat,. 

It is obviously a discrete fibration. 

On the other hand, let us denote by Tors(c, h) the composite pl. h .j. It is the 

usual group extension functor 

Tors(c, h) : Tors(c, A) + Tors(c, A’). 

Proposition 16. The functor Tors(c, h) reflects isomorphisms. It is, up to equiva- 
lence, a fibration. (These two conditions mean that Tors(c, h) is, up to equivalence, 
a discrete fibration.) 

Proof. Let us consider the following pullback, where x1 and xi are discrete fibra- 

tions, X and X’ have a global c-support: 

GIX 
GIW 

’ GIY 

Xl G,X’ 
GIW’ 

K,A Klh 
* K,A’ 

and where the vertical unlabelled morphism is qI(K, h. x1). 

Now xi and xi being discrete fibrations, ,D is c-Cartesian, the same holding for v. 

By definition of p,, the morphisms v/ and v/’ are c-invertible. Consequently, the 

following square is a pullback: 

X’ - Y'. 
w ’ 

So when v is an isomorphism, such is ,u. 

Let us now consider the following commutative diagram: 
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\ 
GI 

J 21 

5 

GlZ 

where the vertical unlabelled map is pI(K, h. x,), z1 is a discrete fibration, and X 

and Z have a global c-support. Thus I+V is c-invertible and r c-Cartesian. Now, accor- 

ding to the first part of this proposition, a morphism in Tors(c,A) above t is neces- 

sarily given by the following pullback: 

T - Z. 
v 

But I,D is then c-invertible and 7 c-Cartesian. Then T has a global c-support, x1 . G, 7 
is a discrete fibration and ql(K1 he x1 . G,T) is, up to isomorphism, equal to zt. 0 

A direct proof that the group extension functor is a strict monoidal functor is 

given by a glance at the following diagram: 

G,(XxX’) 
G(y/x w’) 

* Gl(Yx Y’) 

/I /I 
G,(X) x G,(X’) 

G(c//) x Gl(V’) 
’ G,(Y) x GW’) 

x, xx; cPl(Klh.x,)xcp,(Klh.x;) 

J K,hxK,h L 

K,A xK,A ’ K,A’xK,A’ 

fl I 
K,A 

Klh 
I fl 

,K,A’ 

since the lower square commutes and since G,(I,v x w’) is final, the final-discrete 

fibration factorization system being stable under products. 

Proposition 17. The functors CJQ are natural up to isomorphism (i.e. pseudo- 
natural). That is, the following square commutes up to isomorphism: 
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A-Cat, 
h 

* A’-Cat, 

Tors(c, A) p 
Tors(c, h) 

Tors(c,A’). 

Proof. Let us consider the following diagram: 

Cl(V) cl(r) 
G,X - G,Y - G,Z 

x1j /,,“i& /d&w,) 
KIA - K,A’. 

Klh 

Then G,w and Grr are final and 

Vt(Kth*+%) = rp,W,h.c4(x,)). 0 

Consequence. The functors I&(h) and lir,(Tors(c,h)) determine the same group 

homomorphism 

H’(c,h) :H’(c,A)-,H’(c,A’) 

2.7. The connecting functor 

Given an exact sequence of c-trivial abelian groups in V, 

o- AABhC-0, 

there is determined, as usual, a c-invertible exact diagram in V, 

b h 
AxAxB qAxB:B-C, 

PB 

where b = +. [k. pA,pB] is the canonical action of A on B. 

Let R, [h] denote the c-discrete equivalence relation given by the left-hand portion 

of the previous diagram. We shall define the connecting functor 6 in the following 

way: 
6 : d/C -+ Tors(c, A); 

given (W, u) in d/C, let us consider the following diagram where the square (*) is 

a pullback: 

AxB :B-C 
Pb h 
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and let us set 6(W, u) =(X,x) which is, as usual, an A-left object. The lower line being 

a kernel pair, so is the upper line and (X,x) is c-principal. Furthermore, h being a 

c-invertible regular epimorphism, so is cr. Then 0 being, up to isomorphism, equal 

to X-t dcX, X has a global c-support and (X,x) is a c-torsor. 

Let us now give a direct construction in Grd,V: 

The c-discrete equivalence R, [h], being the kernel equivalence of h, the left-hand 

square of the following diagram is a pullback: (The right-hand square is a pullback 

by definition of KiC.) 

R, IhI ~,~ z dir-i0 

G,B - 
cl” 

G,C A K,C. 
EIC 

Now in the following diagram the right-hand square is again a pullback: 

/ 

R,[h] 

\ 

- I 

G,B - 
0 

K,B A K,C 
Klh 

and ei is the unique map making the left-hand square commutative. The two 

global squares are equal. Consequently, the left-hand square of the second diagram 

is again a pullback. Thus ei is a discrete fibration since EBB is a discrete fibration. 

Remark. We shall denote by k, : GiA --t R, [h] the unique map such that h, . ki = 0 

and pi. k, = G,(k). It is a kernel map of hl. We shall denote by o1 : dis B + R, [h] 

the unique map such that ei . oi = 0 and /I, . CT~ = ICY B. It is a kernel map of elf 

The functor 6 is actually given by the A-torsor underlying the left vertical discrete 

fibration determined by the following construction, the upper square being a pull- 

back: 

4(% u) ----+ disdW 

K,A. 
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Let Tors,/R,[h] denote the full subcategory of G,/R,[h] whose objects (U, ui), 

with u, : G, U-t R, [h], are such that U has a global support and uI is a discrete 

fibration. The previous construction is thus the composite of two functors, 

d/C e Tors,/R,[h] 
V/h 

- Tors,/K,A. 
Tors,/~~ 

Proposition 18. The functor yh is an equivalence of categories. 

Proof. The functor v/h is fully faithful. Indeed, let (W, u) and (W’, u’) be two 

objects in d/C, and let f, be a morphism making the following diagram commu- 

tative: 
fi 

d,(Wu) p 4(W: U’) 

R,Wl. 

Now 6,(W, u) and 6,(W’, u’) are equivalence relations whose quotients are dW and 

dW’. Furthermore, fi is necessarily a discrete fibration. Then, there is a unique 

morphism r : dW+ dW’ making the following diagram a pullback: 

4(w, VI - disdW 

“fl I I dis r 

4 w: 0’) - dis d W’. 

The functor v/h is essentially surjective. Indeed, given an object (U,u,) in 

Tors,/Ri [h], u1 : G1 U + RI [h] is a discrete fibration between equivalence relations. 

Thus ui is no-Cartesian (see [6, Proposition 4]), so its factorization nOul between 

their quotients dcU and C is such that the following diagram is a pullback: 

G,(U) - disdcU 

R,[hl - dis C. 0 

Remark. The exactness property of the long cohomology sequence is based, modulo 

some connectedness property in n-Tors(c,A), upon the above proposition. 

On the other hand, the functor Tars,/@, being a discrete fibration, the functor 

6 is, up to equivalence, a discrete fibration. 

Proposition 19. The functor 6 is a strict monoidal functor. 
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Proof. The exact sequence of c-trivial abelian groups being clearly preserved by the 

functor Gr, the left-hand square of the following diagram is a pullback: 

GIA - R,[h] - GIB 

1 -disc WG,C 

and 6(1,0) = (A, +). 

Let us now show that 

d(c, l)OS(c, 1) = 6((c, l)O(c, 1)). 

To do so, let us remark that the following diagram commutes, since we are working 

in Ab(Grd, V): 

R,Vl XRl[hl = K,AxK,A 

R,thl @I 
’ K,A. 

Secondly, let us consider the following diagram in Ab(Grd,V): 

01 

R, [hl 
hl 

I dis + 

) dis C. 

By definition the square is a pullback, whence we have a factorization 

sl:R,[hlxR,[hl~6,((c,1)0(c,1)) 

which is final since it is a morphism between equivalence relations having the same 

quotient C x C. Consequently, the canonical decomposition of + 1 . el x el = el . +, 

is given by (er . ol) . 71 and thus 

6(c, 1)06(c, I)-6((c, l)O(c, 1)). 
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Now, given two objects (W, u) and (W’, u’) in d/C, the following total square is a 

pullback by definition of 6,(W, u) and S,(W’, u’) and so is the right-hand square by 

definition of S,((W, u)@ (W’, u’)): 

+ dis dWxdis dW’ 

\ fl / 

4m 0) 0 w: u’)> dis u x dis u’ 

I 

Xl 

RlWl xR1Vrl 7 6t((c, l)O(c, 1)) - dis C x dis C. 

Consequently, the left-hand square is a pullback. Now x1 is a discrete fibration 

(since dis u x dis u’ is a discrete fibration). Thus, T, being final, so is 7t. Whence the 

result. q 

Naturality of the connecting functor 
Let the following diagram be a transformation between short exact sequences of 

c-trivial abelian groups: 

k h 
O-A-B-C-O 

0 - A’- B’- C’- 0. 
k’ h’ 

Proposition 20. The following square commutes up to isomorphism: 

6 
d/C - Tors(c, A) 

d/y 

I i 

Tors(c, a) 

d/C’ ------+ Tors(c,A’). 
6’ 

Proof. Note that the given transformation yields a commutative square: 

R, [hl 
R1’P’ ‘I, RI [A’] 

K,A - K,A’. 
Klff 
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Now consider the following diagram: 

dis dW - dis C ___* dis c’. 
dis o dis y 

The exterior and the left-hand squares are pullbacks by definition. Whence there 

exists a factorization rt, which is final as a functor between equivalence relations 

having the same quotient dW. Consequently, w; is the discrete fibration associated 

to R,[P, r] . wl. Whence the result. 0 

2.8. The functor K,, and the higher order cohomology groups 

The c-trivial abelian group A in V yields a c,_,-trivial abelian group K,(A) in 

n-Grd,V, by the following formula: K,(A) = K,(K,_ ,A) or, equivalently, by the 

following cokernel: 

0 - dis(K,_,A) w G,(K,-IA) 7 K,(A) F 0 
n n 

Definition 21. An (n + 1)-torsor on A is a c,_,-torsor X,, on K,,A such that X,, 

is c-aspherical. We shall denote by (n + 1)-Tors(c,A) the full subcategory of 

Tors(c,_,,K,A) whose objects are the (n + I)-torsors. 

The n + 1-torsors and the An-categories 
In the same way as at level 1, the final-discrete fibration factorization in (n + l)- 

Grd,V will give us an alternative description of the group H”“(c,A). 

Definition 22. Let us denote by A,-Cat, the full subcategory of G,, I/K,+ ,(A) 
whose objects (X,, xn+i) (with x,,, , : G,, ,X, --t K,,, ]A) are such that X, is 

c-aspherical. Such objects are called A.-categories. 

Now if W,,x,+d is a An-category, then the canonical decomposition 

Gnl;x;+\Ji: + ,X 

K,+iA 

is such that vn is c,- i-invertible and if X, has a global c,_ i-support, then Y, has 
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a global c,_ ,-support. Consequently, if X, is aspherical, then Y, is aspherical and 

~t(x,+,) determines an (n + I)-torsor. Thus the following embedding: 

j : (n + I)-Tors(c,A) -+A,-cat, 

has a left adjoint we shall denote by pn + , . 

Since the aspherical c-discrete n-groupoids are stable under products, the tensor 

product of G,+i /K,,+ ,A is stable on A,-Cat,. From the definition of q,,+i, we 
can now conclude that the tensor product of Tors(c+i, K,,A) is stable on (n + l)- 

Tors(c,A), and that pn+i is a strict monoidal functor and a fibered reflection. 

Definition 23. We shall denote the group of connected components of the monoidal 

category (n + 1)-Tors(c,A) by H"+'(c, A) and call it the (n + 1)th cohomology group 

of c with values in A. It is equally well defined by the group of connected compo- 

nents of the monoidal category An-Cat,. 

Proposition 24. The group Hnf ‘(c, A) is the colimit of the abelian groups 

H”k[-%lJ,*(Kn+, A)) with X,, aspherical. 

Proof. The group H”(cn [X,,], X,*(K, + I A)) is the group (n + I)-Grd, V(G, + ,(Xn), 

K,, IA) and the proof is the same as that of Proposition 15. 0 

The group H” ’ ’ as the colimit of the H” of the fibers 
Let E be a left exact and Barr exact category; we are now going to show that 

H”+‘(IE, A) is the colimit of the H”(( )OIX],X*(KIA)), with X having a global 

support, that is the colimit of the H” of the fibers of the following fibration, 

restricted to the objects of E having a global support: 

( ). : Grd E + E. 

Indeed, given a left exact fibration c :V + W, instead of considering the c-discrete 

groupoids, we could have considered a more rigid notion, namely that of internal 

groupoids in V such that the images by c of their structural maps are identities 

(instead of isomorphisms). Let us denote by Grd c the full subcategory of Grd,V 

with such objects. In fact, Grd c is the Grothendieck category associated to the 

pseudo functor: 

associating to each object W in W the category Grd c[W] of internal groupoids in 

the fiber c[W]. Whence the following commutative diagram, with the horizontal 

functor a Cartesian embedding: 

Grd c ) Grd,V 
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In the case c=( )0, this functor becomes 

cl : Grd( )a + 2-Grd [E 

and is furthermore essentially surjective (given an internal 2-groupoid in E, it is 

always possible to relabel, up to isomorphism, the object of objects of its structural 

diagram). It is therefore a Cartesian equivalence. In the same way, the pseudofunctor 

[Eop --t CAT, associating to each object X in IE the category (n - 1)-Grd(( )OIX]) of 

internal (n - I)-groupoids in the fiber ( )OIX] has a Grothendieck category denoted 

by (n - 1)-Grd( )0 with a Cartesian equivalence 

[,_i:(n--1)-Grd( ),+n-GrdlE. 

Proposition 25 (H”+l as a colimit of H”‘s). For each left exact and Barr-exact cate- 
gory E the group H”+‘(E,A) is the colimit of the groups H”(( )OIX],X*(KIA)), 
with X having a global support. 

Proof. Let us consider the pseudofunctor 

0, : (81 E> Op + CAT 

associating to an object X the category X*(K,A),_i-Cat and let us denote by L its 

associated Grothendieck category. Now it is clear that K,(K,A) = K,, + ,A. Thus 

there is an embedding y making the following diagram commutative: 

Y 
L + A,-Cat 

I I 
(n - I)-Grd( )a 7 n-Grd iE 

n I 

where the unlabelled arrow is the obvious forgetful functor which associates to every 

X*(K,A),-i-category its underlying internal (n - 1)-groupoid in ( )OIX]. This y is 

actually an equivalence of categories since so is r, _ 1. 

On the other hand, the functor dis: SET+CAT has a left adjoint Q, which is 

actually a left 2-adjoint between the discrete 2-category SET and the 2-category 

CAT. Now L is the lax colimit of 6,,, which is preserved by the left 2-adjoint Q. 

Consequently Z&L, as a set, is the colimit of the Q. l?,, [X] = H”(( )a[X], X*(K,A)). 
Furthermore, 17,(y) is an isomorphism and, as a set, H”” is the colimit of the H”. 
The end of the proof (that it is actually a colimit in Ab) is the same as in Proposition 

15. 0 

Remark. In the absolute situation (E Barr-exact) it is well known that a morphism 

between two torsors is always invertible. Is there an analogous result at level n? Let 

us briefly point out without detail that a morphism between two (n + 1)-torsors is 

an n-functor which is always a weak n-equivalence (see [S]). 
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2.9. The higher-order group extension functors 

Given a group homomorphism h : A +A’ between two c-trivial abelian groups, 

the morphism K,+,(h) : K,,+,A ---f K,, ,A’ allows us to define, in the same way as at 

level 1, a functor 

h : A,-Cat, + A;-Cat, 

which is again a discrete fibration, preserving the tensor product. We have again a 

functor (n + I)-Tors(c, h) = qn+ 1 . H.j: 

(n + I)-Tors(c, h) : (n + I)-Tors(c,A) + (n + 1)-Tors(c,A’). 

Following the definition of pn + 1 and the results at level 1, it preserves clearly the 

tensor product and reflects isomorphisms. It is again a fibration up to isomorphism. 

To see this, mimicking Proposition 16, let us consider the following pullback: 

T,, - Z 
V/n n 

with v/n c,~i-invertible and r5, c,~t-Cartesian, X,,, Y,, Z, being aspherical. Then fR 

is c,~ ,-Cartesian and thus T, has a global c,~ i-support, and ~l/n is c,_ t-invertible 

and thus T,_, is aspherical. Consequently, T,, is aspherical. 

2.10. The higher-order connecting functor 

Let 0 -A 2 B A C - 0 be an exact sequence of c-trivial abelian groups. 

Then 
K,k K,h 

0 - K,A - K,,B - K,C - 0 

is an exact sequence of c,_ t-trivial abelian groups. 

We can now define a higher order connecting functor 

6 : C,_ ,-Cat, + (n + I)-Tors(c, A) 

mimicking exactly the construction at level 1 : given (Y,-,, y,) in Cnpl-Catc, let US 

consider the following diagram where the square * is a pullback: 

X, 
K,A xX, : x, 0, GAY,-,) 

&A XL 

1 

PX,, 

I 

rn (*> 

bn 
I 

Yn 

K,,AxK,,B : K,B 
ps” 

Kh *K,C n 
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and let us set 6(Y,_,,y,J =(X,,,x,J. It is a left K,A-object. Furthermore, K,,h being 

a c,_ i-invertible regular epimorphism, so is on. Now X,_ I is isomorphic to Y,_, , 
which implies, on the one hand, that (X,,x,J is a c,-i-principal left object and that 

X, has a global c,P,-support, on the other hand, that X,-i is aspherical. Conse- 

quently, X, is aspherical and (X,, x,) an (n + I)-torsor. 

Again there is a direct construction in (n + 1)-Grd,V: the lower line yields a 

c, _, -discrete equivalence relation R, + 1 [h], which is the kernel equivalence of K,h. 

It is given by the following pullback: 

Rn+,[hl p dis K,,C 

We have again a morphism Q, + , : R, + , [h] -+ K,,+lA making the following square a 

pullback: 

K,+,Wl 
en+1 

- Kn+,A 

P n+l K k II+1 

1 

G+IKP - Kn,,B. 
&+I B 

Then the functor 6 is given by the (n + 1)-torsor underlying to the left vertical dis- 

crete fibration determined by the following diagram: 

47,1(L,~Y,) - dis G,(Y,_,) 

. 

Rn+,Wl 
, I dis yn 

dis K,, C 

Kn+,A. 

If we denote by (n + 1)TorsJR, + I [h], the full subcategory of G, + 1 /R,+ , [h] whose 

objects (Z,,z,+i), with z,,+~: G,+lZ,+R,+IWl, are such that Z, is aspherical and 

Z n+l a discrete fibration, then the previous construction is the composite of the two 

following functors: 

C,-l-Cab-F;;: @+l)-TorsJR,+,[hl ~n+l~_Tors ,e,+; (n+l)-Tors,/K,+~A. 
c 

Again vh is an equivalence of categories, again 6 is a strict monoidal functor. 
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Finally, these higher order connecting functors are pseudonatural with respect to 

transformation of short exact sequences. 

2.11. The long cohomology sequence 

Given a short exact sequence of c-trivial abelian groups in V, 

k h 
O-A-B-C-0. 

we have thus a long sequence of group homomorphisms 

... - H”(c,A) s H”(c,B) 2 H”(c,C) L H”+‘(c,A) 3 H”+‘(c,B) -*a- 

where, for every f, the morphism f * is Q(n-Tors(c, f)) or Q(f) and 8 = &(6). 

That h* . k* is zero is a consequence of the fact that h. k is zero. 

That 13. h* is zero is a consequence of the following proposition: 

Proposition 26. Given an exact sequence of abelian groups in W, there is a unique 
morphism ?, , : G,A x dis B + R, [h] making the two following squares pullbacks: 

PI(A) PI@) 
GIA - G,AxdisB ------+ disB 

K,A t------ R,[h] p disc 
@I hl 

where p,(A) and p1 (B) are the projections. 

Proof. The image of the short exact sequence by the functors dis, G, and K, gives 

a ‘nine lemma’ diagram in the abelian category Ab(Grd,V). Then, provided that 

A1 = G,A x dis B + R, [h] is just ]k,, a,[, this result is pure diagram chasing. 0 

Then any pullback of dis h. dis u along h, factorizes through EVA and conse- 

quently a. h* is zero at level 1. The proof is exactly the same at level n. 
Finally, that k* . L3 is zero is a consequence of the following: Consider the commu- 

tative diagram 

PI 
GlB - R,[h] - dis C 

I I 
hl 

EIB I I @l 

K,B - K,A. 
Klk 

The composite of the morphism K, k. el by the pullback of any morphism dis u 

along h, factorizes through E,B. Consequently, k *. 13 is zero at level 1. The proof 

is obviously the same at level n. 
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3. The exactness property of the long cohomology sequence 

3.1. The connectedness of n-Tors(c, A) 

In order to prove the exactness of this long sequence, we need first to study the 

connected components of n-Tors(c, A). 
The aim of the following paragraph is to show that in any category of the form 

n-Tors(c,A), if there are two morphisms 
f g 

X-Ve-Y, 

then there are two morphisms: 

X.f’Z-Y. 
g’ 

Consequently, two objects will be in the same connected component if and only if 

the second situation is satisfied. 

Unfortunately, if n> 1, the category n-Tors(c, A) does not admit pullbacks in 

general and therefore we must find another method. This will be to exhibit, in any 

category n-Tors(c,A) and for any object X in this category, what we could call a 

universal co-unit interval or a cohomotopy system, that is, an object Coh X and a 

pair of morphisms 
a 

CohX - X -. 
w 

Then the requirement concerning the connectedness will be obtained by the fol- 

lowing pullback which will always exist: 

2 - Coh ?’ 

WI] v 1 [a, WI 

XXY -VxV. 
fxg 

These cohomotopy systems are all the more interesting as, when [E=L~ is abelian 

they are exchanged by the new denormalization equivalences, with the universal 

classifiers of chain homotopies. 

The connected components of Tors(c,A) 

There is no problem with the category Tors(c, A) since it admits pullbacks. Indeed, 

given two equivariant morphisms (X,x) L (V, o) a (Y, u) between c-torsors, the 

morphism f being certainly c-Cartesian, there is a pullback in LV[A]: 



168 D. Bourn 

The morphismf’ is again c-Cartesian and (Z, z) is a c-torsor since (x y) is a c-torsor. 

Here, at level 1, the cohomology system is reduced for each object V to 

1 
v-v -. 

1 

The connected components of 2-Tors(c, A) 
The previous proof fails at level 2. Indeed, if (Z,,zr) denotes the analogous of 

(Z, z) in a similar diagram, but with an index 1 everywhere, then (Z,, zr) is certainly 

a co-torsor, but cO(Z,) = Z0 fails to have a global c-support in general, since neither 

f0 nor go are necessarily c-Cartesian, and Z, is no more in general c-aspherical. 

However, we have a cohomotopy system in Grd,V, given by 

01 
Corn V, -; V,. 

51 

We are going to show that it determines a cohomotopy system on A,-Cat, and 

2-Tors(c, A). 
First, we saw that Corn V, is aspherical when Vr is itself aspherical. Now Corn is 

a left exact functor and extends to a functor 

COM : Grd(Grd,V) -+ Grd(Grd,V). 

When I’.. is in 2-Grd,V, COM V, is no more in 2-Grd,V. But c being a left exact 

fibered reflection, the following embedding: 

Grd, W + Grd W 

has always a right adjoint (I) (see [4]), and consequently COM- V, is again in 

2-Grd,V. Thus the left exact functor Corn with the co-Cartesian natural trans- 

formations cr and T extends to a left exact functor COM- : 2-Grd,V + 2-Grd,V 

with cl-Cartesian natural transformations 6 and f: 

with d2 and 52 cl-Cartesian above or and Y,. 

Now if V,= G,I/,, then COM- V, is just GZ(Com V,). If V, =K,A, then V, = 1, 

Corn V,=l, and COM-(K,A)=K,A. Whence, for any object (V,,u2) in A,-Cat,, 

the following commutative diagram in 2-Grd,V: 

G2(01) 

WCom VI) : G2Vi 
G2(s1) 

COM- u2 02 

J 1 J 

GA 
1 

: K,A. 

Then (Corn V,, COM- u2) is an object in A,-Cat, (denoted by Com(V,, u2) for short) 

which determines a cohomotopy system in A,-Cat,: 
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When furthermore u2 is a discrete fibration (that is underlying to a 2-torsor), then 

G,(o,) is a discrete fibration (since ot is co-Cartesian) and Com(V,, u2) is under- 

lying to a 2-torsor. Thus the previous cohomotopy system is stable on 2-Tors(c,A). 

Now the functor Corn being left exact, its extension to A,-Cat, is a strict monoidal 

functor. Finally the natural transformation Com(V,, u2) -+ Corn v)~(V,, u2) yields a 

natural transformation 

which makes the extension of Corn to 2-Tors(c,A) a monoidal functor. 

Now, given (X,,x,)L (V,, u2) A (Y,,y,) in 2-Tors(c,A), the morphismsf, and 

g, are certainly CO-Cartesian, and thus so is fi x gl. Whence the following pullback 

in the category of left K,(A)-objects: 

VI 
(Z,, z2) ’ ComWb u2) 

rfL dl (*I 

The internal functor I+V, is CO-Cartesian and Com(V,, u2) is in Tors(ca,K,A), so 

(Z,, zl) is in Tors(c,, K,A). This (Z,, z,) will be a 2-torsor when furthermore Z, has 

a global c-support. This object Z, is the vertex of the following pullback in V: 

ZO 
WO 

’ mv 1 

1""' 1 jldo>d,I 

X,xY - VXV 
O foxgo O O* 

(**I 

But the canonical decomposition of [d,,d,] is the following: 

Ido, 4 1 
mv, - Vox,V, - voxv, 

since the above [do, d,] is clearly c-invertible and the right-hand morphism is 

c-Cartesian above the diagonal c V, --f c V. x c Vo. 
Now V, has a global co-support if and only if this [d,, d,] is a c-invertible regular 

epimorphism, thus [do, dr] : mV, --t V. x V. is c-full. Then [_I$ gh] is again c-full, 

and X0x Y. having a global c-support, Z. has a global c-support. Consequently, 

(Zt,zt) is a 2-torsor. 

The connected components of 3-Tors(c, A) 
The previous construction is not yet sufficient at level 3. Indeed, let us consider, 

in the category 2-Grd V, a pullback similar to the pullback (*), with objects indexed 
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by 2 instead of 1. There is on 2, a structure of c,-torsor. Now .Zr appears in a 

square similar to (**) but indexed by 1 instead of 0. Thus, if V2 has a global 

cr-support, then again [d,, d,] is ce-full and Z, has a global cc,-support. But we can- 

not conclude in general that Z,, which is given by the following pullback, has a 

global c-support and therefore that Z, is c-aspherical: 

zo ’ v, 

I ! 
XOXYO - 

foxgo 
v,xv 0. 

In order to overcome this obstruction, we need the following construction which will 

allow an iteration process to work: 

Definition 27. Given an object V, in 2-Grd V, let us call cohomotopy 2-groupoid 

associated to V, the object of 2-Grd,V defined by the following pullback: 

4 
Coh, V, - ComV 2 

6 

I ! 

r2 

52 
COM- V, - V2. 

It determines a cohomotopy system 

a2 
Cohz V, : v, 

02 

where a2 is the cl-Cartesian map o2 * 0; and o2 the cl-Cartesian map f2. T;. 

The functor Cob,, as a pullback of left exact functors, is itself left exact. 

Example. In the case V = Set and W = U, if V2 is an ordinary 2-groupoid, Coh2 V2 

is, up to isomorphism, the groupoid whose objects are the 1-morphisms of V2, 
whose 1-morphisms are the following squares: 

and whose 2-morphisms are pairs of coherent 2-morphisms between such l-mor- 

phisms. That is the 2-category of quintets in [16], which classifies the pseudonatural 

transformations with codomain V2. 

Proposition 28. When V2 has a global c,-support (resp. is c-aspherical) then 
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Cob, Vz has a global cl-support (resp. is c-aspherical). Moreover, the morphism 
cl [az, w2] : ci(Coh, V,] + V, x VI is c,-full (resp. in 2,). 

Proof. The morphism a2 being ci-Cartesian and V, having a global c,-support, 

Cohz V2 has a global c,-support. Let us now consider the following commutative 

diagram: 

c,(Ch Vd 
ai 

+ c, (Corn V,) = m V2 

, I [do> d,l 
T; 

Corn V, x,, Corn V, 
Ul xc<, 01 4 xc, VI 

41 41 

Corn VI ’ 01 5 

where the q1 denote the second projections. The total square is a pullback as the 

image by ci of a pullback. The lower square is a pullback since the vertical edges 

are cl-invertible and the horizontal ones are cl-Cartesian. Whence there exists a 

morphism 7, making the upper square a pullback. Now V2 has a global c,-support if 

and only if [c&d,] is a (c,-invertible) regular epimorphism. Thus 7, is a cl-invertible 

regular epimorphism. Consequently, the canonical decomposition of c, [a2, 02] is 

the following: 

CI (Cob, V2) 

L 
01 x 51 

Corn VI xc0 Corn V, A ComV,xComV, - V,xV I 

and then Ci [a2, w2] is c,-full. 

Now co= cl [(Ye, 0.4 = [d,, d,] : m V, + V. x V,. So, when V. is aspherical, [do, d,] is 

c-full and cl [a2, 02] in 2,. Consequently, ci(Coh, V,) is aspherical. Thus V, 
aspherical implies Cob, V, aspherical. 0 

We are now going to show that this cohomotopy system can be extended from 

2-Grd,V to AZ-Cat, and 3-Tors(c,A). The functor Cob, being left exact extends to 

a functor COH2 : Grd(2-Grd,V) + Grd(2-Grd,V). Exactly as it is the case at level 

2, we then construct a left exact functor 

COH; : 3-Grd, V --f 3-Grd, V 

with c,-Cartesian natural transformations ds and 6s above a2 and 02: 

63 

COH, V, g v3. 
w3 

Now if V3 = Gs V2, then COH; V, is just G,(Coh, V,). If V3 =KsA, then V, = 1 and 
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COH; V, =K,A. Whence, for any object (V,, us) in AZ-Cat,, the following commu- 

tative diagram in 3-Grd, I/: 

G3@2) 

G,(Coh, V,) : G3v2 

COH; u3 

I 

G3(w2) 

1 

K3A 

, i 

“3 

1 
, K,A. 

Then (Coh2 V,, COH-I/,) is an object in AZ-Cat, (denoted by Coh2(V2, u3) for 

short) which determines a cohomotopy system in A2-Catc, 

a2 

CWl/,, ~3) i (V2, u3). 
w2 

When furthermore u3 is a discrete fibration, G~(cx~) being a discrete fibration, 

Coh2(V2, u3) is underlying a 3-torsor and the previous cohomotopy system is stable 

on 3-Tors(c, A). Again Cob, is a strict monoidal functor on A,-Cat, and a monoidal 

functor on 3-Tors(c, A). 
Now, given (X2, x3) A (V,, u3) * (Y,, y3) in 3-Tors(c, A), the morphisms f2 and 

g, are cl-Cartesian, and 

of left K,(A)-objects: 

cz2v z3) 

so is f2 x g2. Whence the following pullback in the category 

v/2 
’ CoMl/,, ~3) 

(X2,x3) x cy2, Y3) f2xgz (V29u3) x (V29u3). 

Now w2 is cl-Cartesian and Coh,(V,, u3) is in Tors(c,,K,A), so (Z,, z3) is in 

Tors(c,,K2A). This (Z2,z3) will be a 3-torsor when furthermore Z, is aspherical. 

Now Zr is the vertex of the following pullback: 
472 

4 - c,(Coh, V2) 

Lfl’> 61 

I I 

CI b2, ~21 

x1 XY, - v, x v 
flxg1 

1. 

When V2 is aspherical, c, [a2, w2] is in 2’, . So [f,‘, g;] is in 2,. The product X1 x Yr 

being aspherical, so is Zr. 

The connected components of (n + 1)-Tors(c, A) 
Let us suppose we have defined a cohomotopy system in n-Grd,W, 

a, 
Coh, V, : VI, 

wll 
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satisfying the following conditions: 

(1) the functor Coh, is left exact; 

(2) the natural transformations a, and w(), are c,_ I -Cartesian; 

(3) if V, is aspherical, then c,_, [a,, o,] is in ZR ]. 

Clearly, this implies that if V, is aspherical, then Coh, V, is aspherical. 

Now, mimicking exactly what we did in the last section, we are going to construct 

a cohomotopy system in (n + 1)-Grd,.V satisfying the same conditions. 

First, the functor Coh, being left exact, and the natural transformations a, and 

w, being c,_r-Cartesian, extend to a left exact functor COH, : (n + 1)-Grd,V + 

(n + I)-Grd,V and to c,-Cartesian natural transformations L?, + 1 and &,,+ 1. 

Definition 29. Given an object V,, 1 in (n+ I)-Grd,V, let us call cohomotopy 

(n + I)-groupoid associated to V,, , , the object defined by the following pullback in 

(n + 1)-Grd, V: 

a??+1 
Coh,+r v,+r - Corn V II+1 

The functors Corn and COH, being left exact, so is Cob,, , . This construction 

yields a cohomotopy system 

atI+1 

Cohn+, K/n+] - V nil 
Wn+l 

where (Y, + , is the c,-Cartesian morphism a, + 1 . aA+, and IX,, + I is the c,-Cartesian 

morphism 6, + 1 . ~1, + , . Finally, the canonical decomposition of c, [a, + ], co,, + ,] is 

the following: 

cKohn+, v,,,) 

7, ! 
Coh, V, x,, _ 1 Coh, v, 

a,xw, 
- Coh,V,Coh,I/, - v,xV II 

where 7R is the last edge of the following pullback: 

c,(Coh,+, v,,,) 
ffn 

- c,(Com K+r)=mK+r 

Coh, V, x, _ ! Coh, V, ’ VnXn-1 v,. 
@,x+I% 
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Furthermore, c,_, . ~,[a,,+~, CO,+~] =~,~_~[a,,, w,l. 
Consequently, if V, + , is aspherical, then ~,[a,,+~, o,+,] is in 2,. 

Now Coh, being left exact, Coh, 1= 1, and the same reasons, as in the last 

section, apply to extend this cohomotopy system in the same way to A,-Cat, and 

(n + I)-Tors(c,A). 

Finally, the same proof holds for the same result about connectedness in (n + l)- 

Tors(c, A). 

Remark. The passage from Corn X, to Cob, X, (that is, from ‘natural transforma- 

tions’ to ‘pseudonatural transformations’) is based upon the slogan: “put a 2-mor- 

phism wherever there is an equality”. 

The passage to higher order generalizations is based upon the same slogan: “put 

a higher order type of morphism wherever there is an equality”. This is clearly the 

meaning of our construction of Cob,,, V,, 1: by taking the pullback of Corn V, + , 

with COH, V, + , we add a higher order type of morphism (Corn I/nit) wherever 

there was an equality (COH, V, + ,). 

When fE=A is an abelian category, the equivalence N, between n-&d A and 

C”(A) exchanges Coh,(X,) with the universal classifiers of chain homotopies with 

codomain N,(X,). 

The connected component of 0 in A,-Cat, 

Let (V,, v,,+~) be an object of A,-Cat, lying in the connected component of (l,O). 

Then %+r(Krun+l) is in the connected component of vn + 1 (1,O) and consequently 

we are in the following situation: 

Pi, b?+l) +-T--- (Zn,Zn+l) 

i 

I 

vn /L 
1 

V)n+l%Vn+l) -y-- v&~-G,,) - UGAE,+,A) 

with X, aspherical and x, + r : G, + r (X,) --f K, + 1A a discrete fibration. Let (Z,, z, + ,) 
denote the vertex of the pullback of qn along yn in G, + 1 /K,, + , A. Let us show that 

Z, is aspherical. The functor yn is c,_r-Cartesian, thus so is jr, and consequently Z, 

has a global c,_,-support. On the other hand, q,, is c,_,-invertible, and so is y,,. 

Then Z, _, , being isomorphic to X, _ ], is aspherical, and thus Z, is aspherical. 

Therefore, an object (V,, v,+ r) in A,-Cat, is in the connected component of 0 if 

and only if there is an object (Z,,z,+r) in A,-Cat, and two morphisms 
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3.2. The exactness property of the long cohomology sequence 

Exactness at B 

Proposition 30. The following sequence of abelian groups is exact: 

H”+‘(c,A) k’ H”+‘(c,B) h* - H”+‘(c, C). 

Proof. Let (V,, u,+r) be an object in &-Cat, such that h(l/,, u,+~) is in the con- 

nected component of 0, and let us consider the fyllowing diagram satisfying 

c,+rC. G,+r(g,)=G+r(h). u,+~. G+lW with V, A Z, 2 K,C: 

’ Gnil(4n) 
G,+,(Y,,) -----T----+ G,,,K,B = G,,lK,,C 

\ & 

\ 
\ G K II+1 &!I+1 B 

\ 
Yn+l \ 

L 

and where Y, is defined by the following pullback: 

Now K,h is a c, _ r-invertible regular epimorphism and thus so is p,,. So if Z, is 

aspherical, then Y, is again aspherical. 

Moreover, we have the following equalities: 

K,+~(~).%+IB. G,+,(qJ = E,+IC. G,+,Wnh)~ G,+1(qn) 

= En+1 C* G,+ik,). Gn+,(~n) = K,+,(h). u,+I. G,+,CfJ~ G+~(P,). 

Consequently, 

K,+,(h). [u,+I. G,+,(f,.pJ-%+,B. G+,hJl = 0. 

Whence there exists a morphism y,, + , : G, + I (Y,) + K, + 1A such that 

K+,(‘G.Y,+I = ~,+~.G,+,(fn.pn)-&n+,B. G,+,(qJ 
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or, equivalently, 

V .+~.G,+,(fn.~n)-K,+,(k).yn+l =G,+IB.G+I(GJ. 

This last equality implies that, in Hn+](c,B), we have 

(YI,u,+r) = k*(Y,,,Y,+,). 

The foregoing proof is only valid for n >O. We must also show the exactness of 

H’(c,A) k* H’(c,B) h* H’(c, C). 

But d/C admits pullbacks and the proof is straightforward. 0 

Exactness at C 

Proposition 31. The following sequence of abelian groups is exact: 

H”(c,B) h* H”(c, C) a - H”+‘(c,A). 

Proof. Let (VnPr,v,,) be an object in Cn_r-Cat, such that S,(V,_,,u,) is in the 

connected component of zero, and let us consider the following diagram with 

e,+~.x,+l.G,+,(f,)=&,+,A.G,+~(g,): 

G+I(~,) 0 
’ &ilK-1, v,> n+l 

G,+IZ, -----+ dis G,(VnP,) 

/ Pn+l(B) 
- G,,,K,AxdisK,B-disK,,B dis v, 

]AIT+/~” disK,,tz] 

. 

Kn+iA ( R,+,[hl /, 
) 

@,+I 
dis K,, . 

II+1 

The lower left-hand square being a pullback, there is a unique factorization 

Z,+I : Gn+lZ,-t &+I K,AxdisK,B, such thatp,+,(A)~z,+t=G,+r(g,) and ,In+r. 

z,,+r =~n+r. G,+,CfJ. 
Consequently, disK,h~[p,+,(B)~z,+r]=disv,~0,+,~G,+r(f,). The image by 

the functor II, : (n + l)-Grd, V -+ n-Grd, V of this last equation yields a commutative 

diagram in n-Grd,W: 

n,z(@n+~. Gn+~(f,)) 
G,-&-I + %I/,-, 

G(P~+I(B).G+I) V” 

KB Knh ’ KnC 

and consequently we have h*(Z, _ 1, rc,(p, + I (B)~z,+,))=(I/,~~,u,)inH”(c,C). 0 
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Exactness at A 

177 

Proposition 32. The following sequence of abelian groups is exact: 

H”(c, C) a - H”+‘(c,A) k* H”+‘(c,B). 

Proof. Let (V,,u,+,) be an object in A,-Cat, such that k(V,,u,+,) is in the 

connected component of 0, and let us consider the following diagram with 

K,+,k. “,,+I . G,+,W=G,+IB. G,+,k,): 

Rn+,[hl 7 
p dis K,C 

/ / / P nil C 
/ 

! 1 

K,,I 

/L+I(‘?n) 
Gn+,-G - 

G,,IWnh) 
G+,KnB - G,,.,K,C 

Gn+ ,Lfn,j 

G “i’ V, I&,,+,* j_+& 

ul,+I 

K,+,A v K,+,B .+,(k) K,+,(h) ,+ K,.,C. 

Now E n+,C. G,,+,(K,h.g,), being factored through K,+,(h. k), is zero, and there 

is a morphism _Y,,+,:G,+,Z,+~~~K,C such that K,,+,C.~~+,=G,+,(K,~.~,). 
Whence there exists a morphism z,+, : G,+,Z,+R,+,[h] such that &+,.I,,+, = 

G,,, ,(g,). It is easy to check (K,+,(k) being a monomorphism) that 

e,+,.z,+, = u,+~.G,,+,(f,). 

Now by Proposition 18, (Zn,en+,.zn+,) is, up to isomorphism, in the image of 

6 n+,. Then the previous equation means that (V,, u,+,) is in the image of a. 

The above proof is only valid for n>O. Let us show now that the following 

sequence is exact: 

0 B H’(c, A) k* H’(c, B). 

Let (W, u) be an object of d/A whose image by k is in the connected component 

of 0. Then, considering the following diagram: 

dW’ 

A) 
k ’ B, 

we have necessarily u. df = 0 and (W, u) = 0 in H’(c, A). 0 
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4. The classical theories 

4.1. Yoneda’s Ext” 

Let A be an abelian category and Can object of A. Then the category a/C, though 

no longer abelian, is an exact category. An abelian group in A/C is necessarily given 

by a projection A x CA C with A any object of A. Let C*(A) denote this abelian 

group in A/C. We are now going to show that the category n-Tors(A/C, C*(A)) is 

equivalent to the category EXT”(C,A) of n-fold extensions of A by C and that 

consequently the groups Hn(NC, C*(A)) and Ext”(C,A) are isomorphic. 

Let us first recall that there is, for any integer n, an equivalence making the 

following diagram commutative: 
N,, 

n-GrdA I C”(A) 
I D,, I 

where C”(A) denotes the category of abelian complexes of length IZ in A and T,_, 

the truncation of the last element of an n-complex. This functor T,_, has a right 

adjoint Kr, (which is the augmentation by the kernel) equivalent to the functor G,. 

Now, any internal abelian group in A is reduced to the data of an object A in 

A. The image of the group K,A in n-Grd A by the functor N, is then the following 

n-complex, we shall again, improperly, denote by K,,A: 

The category A/C is the fiber above C of the fibration T, : C’(A) -+ A. Con- 

sequently, Grd(A/C) is equivalent to the category C2(A),. of 2-complexes in A 

ending with C. The functor corresponding to ( )e, is just the restriction of 

T, : C2(A), + MC. Its right adjoint, corresponding to G,, is the augmentation of 

a l-complex by its kernel. 

More generally, according to the new denormalization theorem, the category 

n-Grd(A/C) is equivalent to the category C nc’(A)e of (n + 1)-complexes ending with 

C whose morphisms are just transformations of (n+ I)-complexes with 1, at C. 

The functor ( ),_ I : n-Grd(A/C) + (n - I)-Grd(A/C) is equivalent to the restric- 

tion of T,: C”+‘(L~), + C”(A),, its right adjoint being again the augmentation of 

an n-complex by its kernel. Therefore, an object of n-Grd(/UC) with a global 

( ),-,-support corresponds to an (n + I)-complex which is exact at level n and an 

aspherical object of n-Grd(A/C) corresponds to an (n + 1)complex which is exact 

at any level. 

On the other hand, a left action of the group K,,A on an object of C”(A) is 

obviously equivalent to an augmentation of this n-complex by A. This action is 

T n i-principal if and only if this augmentation is actually a kernel augmentation. 
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Consequently, the category of left K,(C*A)-objects in n-Grd(A/C) is equivalent 

to the category C”‘2(C,A) of (n +2)-complexes between A and C whose mor- 

phisms are transformations of complexes with 1, at A and 1, at C. The category 

(n+ 1)-Tors(A/C, C*(A)) is then equivalent to the category EXT”+‘(C,A) of 

(n + I)-fold extensions of A by C, and the groups H”+‘(C,A) and Ext”“(C,A) are 

isomorphic. 

4.2. Cohomology of groups in the sense of Eilenberg-Mac Lane 

It is now possible to come back to our starting point, namely the cohomology of 

groups. 

The category Grp of abstract groups is an exact category. We are now going to 

show that the interpretation of the cohomology groups of a group, determined by 

the construction given in this paper, is, up to isomorphism, the same as those given 

by Holt [22] and Huebschmann [23] by means of crossed n-fold extensions. 

Let Q be an abstract group. Then the category Grp/Q is again an exact category. 

Let (A, z, +) be an internal abelian group in Grp/Q: 

Qg- 
+ 

A-‘4x A. Q 

The pullback of a along the map 1 -+ Q determines an abelian group M= Ker a, 
on which Q is acting through z: q. m =z(q). m . z(q-‘). Conversely, given a left 

Q-module M, the semi-direct product MD< Q determines an abelian group in 

Grd Q. Let us denote by Q*(M) this abelian group. Then H’(Grp/Q, Q*(M)) is 

nothing but the group of the sections of MD( Q -+ Q, that is, the group of deriva- 

tions Der(Q,M). The aim of this section is to show that the group H”(Grp/Q, 

Q*iV) is isomorphic to the group Opext”(Q,M) of [23] (see also [22]). 

It is well known that Grd(Grp) is equivalent to the category X-Mod of crossed 

modules, where a crossed module [lo] (C, G, a) is a pair of groups (C, G), endowed 

with a left action of G on C, written (g, c) + gC and a homomorphism 8 : C + G of 

G-groups where G acts on itself by conjugation. Moreover, the map a must satisfy 

be c. b-’ = ‘@)c for each (b, c) in CX C. The notion of morphism is natural. Let 

( ). be the forgetful functor X-Mod + Grp which associates G to (C, G, a). 

Let N: Grd(Grp) +X-Mod denote this equivalence. Clearly ( ),, . N= ( )a and 

N. G,(G) = (G, G, id) where G is acting on itself by conjugation. We shall denote 

again, improperly, this functor N. G, by G,. 

A natural problem, now, is to determine to which category the category 

2-Grd(Grp) is equivalent. 

Definition 33 (see for instance [23]). Let us call a crossed 2-fold complex a sequence 

c2- a* C, -% G of group homomorphisms such that 

(1) (C,, G, a,) is a crossed module; 

(2) C2 is a G-module and a, a morphism of left G-action; 
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(3) a,.a,=o; 

(4) al(cl)c,= c2 for each (c,,~) in C, x C,. 

This last condition means that C, is actually a G/a, c,-module. A consequence 

of (2) and (4) is that a,C, is in the center of Ct. The notion of morphism between 

two crossed 2-fold complexes is the natural one. Let us denote this category by 

2-X-Mod. 

Proposition 34. The categories 2-Grd(Grp) and 2-X-Mod are equivalent. 

Proof. The categories Grd(Grp) and X-Mod being equivalent, it is sufficient to 

prove that the standard construction applied to: 

( 10 
Gw -====s X-Mod 

GI 

is equivalent to 2-X-Mod. For that let us study what is a ( ),-discrete groupoid: it 

is a sequence of group homomorphisms, 

do 
Cl : K, F 

d, 
K2 

\ aI 

G 

where (C,, G,a,) is a crossed module, a,. d, = a,. dl =a, (K,, G, a) is a crossed 

module, d, and dl are morphisms of crossed modules, K2 is the pullback of d, 
along d, in X-Mod. 

Let C, denote Ker d, and a2 the restriction of do to Cz. Then clearly, a, . a2 = 0, 

C, is a G-module and 8, a morphism of left action. 

Now k,. k;. k;’ = aklk; for each (k,, k;) in K, x K,. If kl is in C,, then a(k,) = 
a, + d,(k,) = 1 and C2 is in the center of K,. Thus, 

alcc1)c2 = a(s0cl)c2 = sot, . c2. s,c,l = c2. 

Furthermore, K, is isomorphic to C, x C, by k, + (k, . s,d,(k;‘), d,(k,)). 
Conversely, given a crossed 2-fold complex, let K, be the product of C2 and C, 

as left G-objects. Then it is easy to check that, defining a(c,,c,) as a,(~,), we get 

a crossed module (C2x C,, G, a) and, defining dl(c2,c,) as cl and d,(c,,c,) as 

a2(c2). cr, we get a ( ),-discrete groupoid. q 

We thus get a pair of adjoint functors: 

( )I 
X-Mod \ 2-X-Mod 

(32 

defined by G2(C, G, a) = (Ker i3 - CA G) and 

satisfying the conditions of the basic situation. 

More generally, 

(C, a C, L G), = (C,, G, a,), 
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Definition 35 (see for instance [23]). Let us call a crossed n-fold complex, a sequence 

of group homomorphisms such that 

(1) (C,, G, a,) is a crossed module; 

(2) for 21/25n, each C, is a Q-module, where Q= G/8,C1 and each ak is a 

Q-map; 
(3) ak_,ak=o. 

The notion of morphism of crossed n-fold complexes is the natural one. Let 

n-X-Mod denote this category. 

Proposition 36. The categories n-Grd(Grp) and n-X-Mod are equivalent. 

Proof. By induction, and mimicking exactly the proof of Proposition 34. We thus 

get the following commutative diagram: 

N,, 
n-Grd(Grp) ( ’ n-X-Mod 

I 

& 

( h-1 G-I 

N,,-I 
! 

(n - I)-Grd(Grp) 1 
% I 

(n - 1)-X-Mod 

where the functor T,_, is the truncation of the last element. 0 

As a consequence, the category n-Grd(Grp/Q) is equivalent to the category 

n-X-Modg whose objects are the sequences of group homomorphisms: 

a, aI a 
G - G-1 -...-----f C, + G - Q 

where the indexed part is a crossed n-fold complex such that 

a. a, = 0. 

Now the functor ( ),_ , : n-Grd(Grp/Q) --) (n - I)-Grd(Grp/Q) is equivalent to 

the truncation of the last element, and G, to the augmentation by the kernel. Thus, 

an object of n-Grd(Grp/Q) having a global ( ),_l-support corresponds to a 

sequence which is exact at level (n - I), and an aspherical object to a sequence which 

is exact at any level. 

On the other hand, given a left Q-module A4, the object of n-X-ModQ correspon- 

ding to K,>(Q*(M)) is the following: 

Id 
M-I-...-1-Q-Q. 

Let us denote it by IY,(M). A left K*(M)-action on an object of n-X-ModQ is 
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obviously equivalent to an augmentation of this object by M, the action being 

T,_,-principal if and only if this augmentation is a kernel augmentation. Conse- 

quently, an (n + 1)-torsor corresponds to a crossed (n + 1)-fold extension of A4 by Q 

[23], that is, an exact sequence of groups 

a o-44~ ($2 c,_, aI a 
-...-C,+G--tQ---tI 

with the following properties: 

(1) (C,, G, a,) is a crossed module; 

(2) for l<kin, C, is a Q-module, and the morphisms aK and y are Q-linear. 

Consequently the category (n + I)-Tors(Grd/Q, Q*(M)) is equivalent to the cate- 

gory OPEXT”+‘(Q,M) f o crossed (n-t 1)-fold extensions of A4 by Q, and the 

groups H”+‘(Grp/Q, Q*(H)) and Opext”+‘(Q,M) are isomorphic. 
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