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Given an exact category [, we associate to it a fibration ¢ above [E such that, for each object
X of E, the fiber c[x] is again exact. If, moreover, A is an internal abelian group in E, it deter-
mines a family of abelian groups A, in the fibres c[x], such that the group H(E, A) is the colimit
of the H%c[x], A,). This remark allows us to define iteratively H”*(E, A) as the colimit of the
H"(c[x], A,). These groups are shown to have the property of the long cohomology sequence.
When E = Ab, the construction coincides, up to isomorphism, with Yoneda’s classical description
of Ext”. When E=Grp, it coincides with the cohomology groups of a group in the sense of
Eilenberg-Mac Lane.

Introduction

An interpretation of the first and second cohomology groups of a group, in the
sense of Eilenberg-Mac Lane [17], was given in [2], in terms of connected compo-
nents of a lax limit and a 3-dimensional lax limit. It was just a remark, bringing a
geometrical flavour to the abstract formulae of crossed homomorphisms, principal
homomorphisms and factor sets. At that time, the investigation of general n-cate-
gories seemed to be premature, making a similar interpretation for higher cohom-
ology groups impossible. Just such an interpretation is the aim of this paper.

Indeed, since that time, much work has been done in this area. First there were
the papers of A. and C. Ehresmann [15] about n-fold categories, which are even
more general than n-categories, and a paper on their recent use in K-theory by
Shimakawa [28]. There were also the papers by Brown and Higgins [9-11], con-
cerning the generalization of the Seifert-Van Kampen theorem: an important step
of their work consisted in the proof of the equivalence between the category of
crossed complexes and the category of o-groupoids. Finally, there was the work of
Loday [25] in homotopy theory, using an equivalent of internal n-fold categories in
the category Grp of abstract groups.

All this work seemed to be sufficient reason to undertake the systematic investiga-
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tion of internal n-categories [3,6-8], a different approach being taken and parallel
progress being made by Street and the Australian school [29], and also to return to
the problem of realizing cohomology groups (and not only abstract groups) by
means of n-categories or, better, n-groupoids.

In order to see this, let us remember that, if F is a Barr exact category and A an
abelian group in E, the group H°(F, A) is defined as the group F(1,4) of global
elements of A4, and the group H'(E, A) as the group of connected components of
the monoidal groupoid Tors(E, A) of A-torsors, that is to say, principal A-actions
on objects of E having a global support (see for instance [1]). Though there were
other presentations of higher order cohomology groups, for insiance by means of
special kinds of simplicial Kan fibrations by Duskin [14] and Glenn [19], such a
presentation of cohomology groups by means of group actions, in the usual sense,
actually stops at level one with the well-known six-term exact sequence.

Now, let us denote by Grd E the category of internal groupoids in E and by ¢ the
forgetful functor c:Grd F— E, associating to each groupoid X its object of ob-
jects X,. It is in fact a fibration, whose fibers ¢[M], for each object M in [, are
again Barr exact. Furthermore, if A4 is an abelian group in E, an abelian group being
a group in the category of groups in [E, it obviously determines an abelian group
K,(A4) in the fiber ¢[1] and therefore, by change of base along the terminal map
M -1, an abelian group M*(K,(A4)) in each fiber c[M]. The starting point of this
work is the following remark: the abelian group H'(F, A) is nothing but the colimit
of the abelian groups H°(c[M],M*(K, A)), the objects M having a global support.
This point is simply based on the fact that any functor between internal groupoids
in E has an associated discrete fibration.

It is therefore natural to investigate whether the colimit of the group H'(c[M],
M*(K,A)) (which are the H' of the fibers of ¢) is, in the classical examples, a
realization of the second cohomology group, and, more generally, whether that is
the case for the higher order groups (let us denote them beforehand by H" *!(E, A))
defined iteratively by the colimits of the H"(c[M], M*(K, A)) (which are the H" of
the fibers of c¢).

Now, what are the objects of H*(E, 4)? According to our initial remark, they
are described by classes of internal groupoids in the fibers of the fibration c¢. That
is to say, strictly speaking, internal 2-groupoids in E. More generally, the objects
of H"(E, A) are described by classes of what appear to be exactly internal n-group-
oids in E. When E= A is an abelian category, this description of the H” coincides,
up to isomorphism, with Yoneda’s classical description of Ext”. There is, indeed,
another possible denormalization theorem for abelian chain complexes [4]: that is,
for each integer n, a natural (in n) equivalence between the category n-Grd A of
internal n-groupoids in A and the category C”(A) of abelian chain complexes of
length n. Similarly, when F is the category Grp of abstract groups, this description
is equivalent to those given by Holt [22] and Huebschmann [23] of the homology
groups of a group in the sense of Eilenberg-Mac Lane, by means of crossed n-fold
extensions.
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The aim of this paper, summarized in [5], is thus to describe precisely these groups
H"(E,A) and to show that they have the property of the long cohomology se-
quence. The introduction of n-groupoids in the realization of cohomology groups
does not seem to be a mere gadget. On the one hand, it appears to be the most direct
way to extend the classical description of the first cohomology group by means of
principal actions to the higher order cohomology groups. On the other hand, while,
in the abelian situation, the usual Dold-Kan equivalence between abelian chain
complexes and simplicial abelian groups does not strictly exchange chain homo-
topies with simplicial homotopies, the new equivalences between C"(A) and
n-Grd A do strictly exchange chain homotopies with what is known as (higher order)
pseudonatural transformations. In this sense, the two notions of n-complexes and
internal n-groupoids seem to be more closely connected than the notions of com-
plexes and simplicial objects.

Main definitions and results

Now to be more explicit and before going into detail, let us recall the main defini-
tions concerning internal n-groupoids and let us introduce briefly the cohomology
groups.

A. Internal n-categories and n-groupoids
Let V be a left exact category. An internal category in V is a diagram X in V,

dp dp
——— —
Xy —5— mX; g mX,
<—E—— 4——(1;—

such that m, X, is the vertex of the pullback of d, along d,, satisfying the usual
unitary and associativity axioms. An internal functor is just a natural transforma-
tion between such diagrams. Let Cat V denote the category of internal categories
in V and ( ) the forgetful left exact functor Cat V — V associating X to X;. It has
a fully faithful right adjoint G,.

An internal category is discrete when s, is an isomorphism. It is a groupoid if the
following diagram is a pullback:

d
mX, my X,
d] d2
Xy mX;.

1

Let Grd V denote the full subcategory of CatV whose objects are the internal
groupoids and again ( ), the forgetful functor. Whence the following situation:
Jo

(
Grd Vv — V.

1
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Now suppose we are in the general similar situation (called the basic situation)

c
v d

with V left exact, ¢ left exact and d a fully faithful right adjoint of c. We denote
by Cat,V the full subcategory of Cat V whose objects, called c-discrete categories,
are the internal categories in V mapped by ¢ on a discrete category in W. The latter
is the case if and only if ¢(sy) is an isomorphism. Denote by Grd,.V the full cate-
gory of Cat,V whose objects are groupoids. Let ¢5:Grd,V -V be the forgetful
functor. It is left exact and has a fully faithful right adjoint G,, given for any
object V in V by the kernel equivalence relation of V—dcV:

P P
deV ==V ——— VXV e—— VX VxV.
7 ¢ 5 ¢ &
1 2

Consequently we are again in the basic situation:

€0

Grd, V v

1

and in the position to iterate the process.
Let us denote the nth iterated step of this basic construction in the following way:

Cn—1

n-Grd, V (n-1)-Grd, V.

n
An object of n-Grd,.V is called a c-discrete n-groupoid, and a morphism an inter-
nal n-functor. Now starting from a left exact category F and from the following
basic situation:

E——

1

where 1 is a terminal object in E, we obtain the following tower

(- (N (o
(n—=1)-GrdE...2-GrdE —— GrdE —=F =1

Gy G G

...n-Grd E

whose nth term is called the category of internal z-groupoids in E.

B. The first cohomology group relative to ¢

Suppose we are again in the basic situation with, moreover, ¢ Barr-exact [4]
meaning that each c-discrete equivalence relation in V is effective and has a univer-
sal cokernel. Let A be an abelian group in V. A left A-object is well known to be
an object V' in V, together with a left action v: A XV — V with v-[0,V]=V and
v-(AXv)=v-(+xV), where V denotes 1, for short, a morphism between
A-objects being a morphism which commutes with the given actions. Let LV[A]
denote the category of left A-objects in V.
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Now let K;(A4) be the following internal groupoid (actually a group) in V:
. P
Ki(4):1 —2— 4 —— 4xA.
- 2!

It is well known that the category LV[A] is equivalent to the category FD/K,(A)
of internal discrete fibrations above K;(A), this equivalence associating to (V; v) the
following internal discrete fibration:

v AxXv
— —
F(V,0):V S AxV 2V gxaxy
Py 71><V
fiV,v) Da PaxA
Ki(A) : 1 A AXA.

Later on we shall often identify the left A-object (V,v) with the discrete fibration
SV, v).

Definition 1. The group A is said to be c-trivial if ¢(A4) is equal to 1, or equivalently
if K;(A4) is c-discrete.

Proposition 2. [f A is c-trivial, then the groupoid F,(V,v) is c-discrete.

Proof. The morphism c(p;) is the inverse of c[0, V'] since ¢ is left exact and A
c-trivial. O

Now this groupoid being c-discrete and Fy(¥, v) =V, there is an internal functor

o, Fi(V,v) > G(V).

Definition 3. The left object (¥, v) is said to be c-principal when this functor ¢, is
an isomorphism, or equivalently when the following map in V:

[v,py] tAXV-VX,V

is an isomorphism.
Let c-PV[A] denote the category of c-principal A4-objects in V.

Definition 4. An object ¥ in V is said to have a global c-support if the map V — dcV
is a regular epimorphism.

Definition 5. A c-torsor is a c-principal A-object (¥,v) with V having a global
c-support.
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Given a c-trivial abelian group A4, we define Tors(c, A) as the full subcategory of
c-PV[A] whose objects are the c-torsors. Now, the functor ¢ being Barr-exact, there
is on Tors(c, A) a tensor product, defined exactly as in the classical situation.

The group of connected components of Tors(c, A) is denoted H'(c, A) and called
the first cohomology group relative to c.

C. The higher order cohomology groups of ¢

If ¢ is Barr-exact, then ¢, is again Barr-exact (see [3]). The object K(A) is actually
an abelian group in Grd,V, since, 4 being abelian, the morphism +: AxA4 - A4
determines an internal functor +,: K;(A) X K;(4) — K,(A4).

Moreover, this abelian group is clearly ¢,-trivial. Consequently we are again in
the previous situation with ¢y: Grd,V — V Barr-exact and K;(A) a cy-trivial abelian
group in Grd,.V. So we have again a monoidal category Tors(cy, K;(A4)).

Definition 6. A c-discrete groupoid X, is said to be c-aspherical when X, has a
global cy-support and X, a global c-support.

Let 2-Tors(c, A) be the full subcategory of Tors{cy, K;(A4)) whose objects (X, x;)
are such that X is c-aspherical. The tensor product of Tors(cy, K(A)) is stable
on 2-Tors(c,A). The group of connected components of 2-Tors(c, 4) is denoted
H?(c, A) and called the second cohomology group relative to c.

More generally, the functor c,_,: n-Grd,V — (n —1)-Grd, V is again Barr exact.
We have, in n-Grd V, a c,_-trivial abelian group defined by the formula K,(4)=
K(K, - 1(A)).

Definition 7. An object X, of n-Grd,V is said to be c-aspherical if X, has a global
¢,_i-support and, moreover, X,_; is c-aspherical.

Let (n+1)-Tors(c, A) be the full subcategory of Tors(c,_, K,,(A)) whose objects
(X, x,) are such that X, is aspherical. The tensor product of Tors(c,_, K,(A4)) is
stable on (n+1)-Tors(c,A). The group of connected components of (n+ 1)-Tors(c, A)
is denoted H"*!(c, A) and called the (n+1)th cohomology group relative to c.

This paper will be mainly devoted to show that these H"(c, A) have the property
of the cohomology long exact sequence.
Here is the organization of this paper:

Internal n-groupoids;

The cohomology groups relative to a fibration;

The exactness property of the long cohomology sequence;
The classical examples.

TS S

1. Internal n-groupoids

In this section, we shall recall the main results about the basic situation and the
internal n-groupoids.



The tower of n-groupoids 143
1.1. The basic situation

A functor ¢, together with the whole basic situation, will be called a left exact
fibered reflection [3], such a definition being justified by the fact that ¢ is just a left
exact functor and a fibered reflection that is, up to equivalence, a fibration with a
terminal object in each fiber.

A c-Cartesian morphism is nothing but a morphism f: ¥ - V" in V such that the
following diagram is a pullback:

S

|4 Vv’

dcV T dcV’.

The class ¢-Cart of c-Cartesian morphisms is obviously stable under pullback and
composition. It contains the isomorphisms. Furthermore, if g and g+ fare in ¢-Cart,
then fis in ¢-Cart. Finally, a morphism dh, for any A in W, is trivially c-Cartesian.

Now given a class of morphisms = in V, let us denote by =+ the class of mor-
phisms g in V, satisfying the diagonality condition [12, 18, 30}: for any commutative

square
S— X

T—— y

with fin Z, there is a unique dotted arrow making the two triangles commutative.

The class (c-Cart)* is just the class c-Inv of c-invertible morphisms, that is mor-
phisms whose image by c is invertible. The class c-Inv is stable under pullback and
composition. It contains the isomorphisms. Furthermore, if any two of the three
morphisms f, g and g- f are in ¢-Inv, then the third one is in ¢-Inv.

It is clear that a morphism which is at the same time ¢-Cartesian and c-invertible,
is an isomorphism. Any morphism f in V has a unique, up to isomorphism, decom-
position f=f¢-f' with f! c-invertible and f¢ c-Cartesian, given by the following
diagram in which the square (%) is a pullback:

y—2
A
/ (*)

dcV T dcV”.

Finally, a commutative square with a pair of parallel edges in c-Cart and the other
one in c-Inv is certainly a pullback.



144 D. Bourn

Example. In the case E left exact and ¢=( )y:Grd E—E, a ( )y-Cartesian mor-
phism is an internally fully faithful functor and a ( ),-invertible one is an internal
functor which is ‘bijective on objects’.

1.2. Barr-exact fibered reflection

The fibered reflection ¢ is said to be Barr-exact if, moreover, any c-invertible
equivalence relation in V has a quotient (a coequalizer making this equivalence rela-
tion effective) which is universal. Clearly such a quotient is c-invertible.

Remark. A fibered reflection is Barr-exact if and only if its associated fibration (up
to equivalence) has its fibers and its change of base functors Barr-exact [3].

Example. When [ is Barr-exact and left exact, then the functor ( )g: Grd E— E is
a Barr-exact fibered reflection.

An object Vin V is said to have a global c-support when the terminal map in the
fiber: V= dcV is a c-invertible regular epimorphism. It is clear that, if f: V—=V"1is
c-Cartesian and V' has a global c-support, then ¥ has a global c-support. Further-
more, ¢ being left exact, the product of two objects U and V with global c-supports
has a global c-support.

Definition 8. A morphism f: ¥V — V’in V is called c-faithful if its c-invertible part
S'is a monomorphism and c-full if /' is a regular epimorphism.

Let 2 denote the class of ¢-full morphisms. It is stable under pullback and com-
position. It clearly contains c-Cart.

Thus an object V in V has global ¢-support if and only if its terminal map in V,
V-1, is c-full. Consequently, when f: U— V' is in 2 and V has a global c-support,
then U has a global c-support.

Example. As expected from this terminology, a ( )¢-faithful morphism in Grd E
(resp. ( )o-full) is simply an internally faithful (resp. full) functor.

1.3. The c-discrete groupoids

Let us consider now the following fibered reflection:

Co
Grd,V ——

G,

V.

There is again a canonical decomposition dealing with ¢y-invertible and c¢,-Cartesian
morphisms.
Now, if ¢ is Barr-exact, then ¢, is again Barr-exact [3]. We shall say that a c-dis-
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crete groupoid X, is c-aspherical when X has a global ¢y-support and X, a global
c-support. If f;: X, - Y is a morphism between aspherical c-groupoids, then the
vertex Z; of its canonical decomposition,
fi c
X, o Z _f‘__, Y,
is aspherical: Z, has a global cy-support since f;" is Cartesian and Y; has a global
cy-support. Moreover, Z,, being isomorphic to X, has a global c-support.

The class 2,

There is, in Grd.V, a class of morphisms which will be very important for us,
namely the class X, of morphisms f; : X; = Y, such that f| is ¢y-full and fy: Xy — Y,
is c-full. This class X is stable under pullback and composition. It contains the iso-
morphisms.

A c-discrete groupoid Y; is then aspherical when its terminal map Y; — 1 is in 2.
Consequently, if f;: X; - Y, is in 2| and Y, is aspherical, then X, is aspherical.

At last, it is easy to check that if f; is in 2, then mf, : mX| - mY is again c-full.

The functor m,

Actually the functor ¢, has also a left adjoint dis, where dis V' is the c-discrete
groupoid with every structural map equal to 1. When ¢ is Barr-exact, this functor
dis has itself a left adjoint 7,: Grd,V —V, which is a fibered reflection (see [7])
(obviously, no longer left exact).

1.4. The discrete fibrations and the final functors

From now on, we shall suppose ¢ Barr-exact. Besides the cy-Cartesian cy-invertible
decomposition, there is in Grd,V another significant factorization system.

Let us recall that an internal functor f] : X; ~ Y| is said to be a discrete fibration
when the following square is a pullback:

mf,
le —"l_" mYl

dl} ld.

X, Y,

Jo

Let DF denote the class of discrete fibrations. It is stable under pullback and com-
position. It contains isomorphisms. If g,- f; and g; are in DF, then /] is in DF. Any
functor dis f is a discrete fibration for any f in V. A functor in DF* is called final.

When [ is left exact and Barr-exact, it is shown in [6] that in Grd E every functor
has a unique, up to isomorphism, factorization f; =k - h; with k; in DF and A,
final. Furthermore, the final functors are stable under pullbacks along a discrete
fibration. It is possible to check that exactly the same construction and the same
result hold in Grd,V when c is a left exact and Barr-exact fibered reflection.
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Moreover, it is essential for us that this decomposition is stable under product.

Now, if f: X - Y is c-Cartesian in V, then G, f: G| X - G,Y is a discrete fibra-
tion in Grd,V. Conversely, when G,f: G, X — G,Y is a discrete fibration and the
objects X and Y have a global c-support, then f is c-Cartesian (see [6, Lemma 4]).

If fis c-invertible, then G, f is final if and only if X and Y have the same c-sup-
port. In particular, G, f is final as soon as X and Y have a global c-support and f
is c-invertible. Finally, if a morphism f;: G, X—Y; is final, then there exists a
c-invertible morphism f: X — Y such that fi=G,f. When, moreover, X has a
global c¢-support, this Y has itself a global c-support.

On the other hand, the fibered reflection 7, determines also a factorization sys-
tem. It is shown in [6] that my-CartCDF and consequently DF*C my-Inv. More
precisely, it is possible to check that:

DF* = my-Inv N ¢p-Full.
1.5. The universal representor for natural transformations

It is well known that the category Cat V is actually underlying a 2-category. But,
when the category V is left exact, this higher order structure, which will appear to
be extremely important for the exactness property of the long sequence, can be en-
tirely represented by 1-morphisms [20]. Indeed, for any category X; (resp. group-
oid) there is a category (resp. groupoid) Com X, together with two functors

J|

Com X X,

T

such that any internal natural transformation
Y, | X,

can be represented by a unique functor Y; —» Com Xj.

If X, is c-discrete, then Com X, is c-discrete.

Actually, there is a very strong connection between this 2-categorical structure
and the fibration ¢;: Grd,V -V which exempts us from further description.

Proposition 9. A c-discrete category X, is a c-discrete groupoid if and only if g,
(resp. 7;): Com X, — X, is cy-Cartesian above d (resp. d)): mX,;— X,.

Proof. See [7, Proposition 18 and Corollary]. [

This construction Com clearly extends to a left exact functor Com:Grd, V —
Grd,V and to natural transformations g, and 7;. Furthermore, Com(G,V) is
isomorphic to G,(V %, V). It is clear from Proposition 9 that Com preserves the
co-Cartesian morphisms.
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When c is Barr-exact, if X, is aspherical, then Com X is aspherical. Further-
more, if fj: X;— Y, is in 2|, then Com f; is in 2.
1.6. The c-discrete n-groupoids

From the fact that the following fibered reflection:

Cn-1

n-Grd,V (n-1)-Grd, V¥V

n
is again Barr-exact, we have also at this level, besides the c,_;-invertible ¢, _;-
Cartesian decomposition, the final-discrete fibration decomposition. We have again
a functor

M,y :n-Grd, V — (n—1)-Grd, V,

left adjoint to the functor dis.

The aspherical objects and the class %,

The notion of aspherical objects in n-Grd,V is defined by induction from the
notion of aspherical objects in Grd,V:

A c-discrete n-groupoid X, is said to be c-aspherical if it has a global ¢, _;-
support and X, _, is c-aspherical. Then if X,, » Z,, — Y, is the canonical decomposi-
tion of £, associated to the fibration ¢, _; and if X, and Y, are c-aspherical, then Z,
is c-aspherical: it has a global ¢, _;-support since the right part is ¢,_;-Cartesian
and Z,_, is c-aspherical since the left part is ¢, _;-invertible.

In the same way, there is a class 2, defined by induction from Z;: an n-functor
fo:X,-Y,isin X, if it is ¢,_,-full and f,_, is in 2,_,. The class 2, is stable under
pullback and composition. It contains isomorphisms.

An object Y, is then aspherical when its terminal map ¥,—1 is in 2,. Conse-
quently, if f,: X, — Y, is in Z, and Y, is aspherical, then X, is aspherical.

Now ¢,:Com X, —» X, being c¢,_,-Cartesian and its image by ( ),_, being
dy:mX,— X,_,, that is a ¢, _,-invertible split epimorphism, then g, is in 2,. Con-
sequently, Com X, is aspherical if X, is aspherical. Furthermore, if f,: Y, — Y, is in
2., then Com f, is in 2.

2. The cohomology groups relative to ¢

2.1. The category Tors(c, A)

Now let 4 be a c-trivial abelian group in V (c(A)=1) and let LV[A] be the cate-
gory of left A-actions in V.

Proposition 10. If (V,v’) is a left A-object and f:V -V’ is a c-Cartesian mor-
phism, then there is a unique left A-action v on V such that f is equivariant. If
(V' v’) is c-principal (resp. a c-torsor), then (V,v) is c-principal (resp. a c-torsor).
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Proof. Let us consider the following diagram:
12
AXYV —=——=3 V dcV

PU
Afo fl jdcf
v

AXV' T —3 V'———— dcV".
nv

The two preceding squares being pullbacks, there is a unique v: A XV — V such
that /- v=v’- A X f, obviously satisfying the left action axioms. Moreover, if (V',v")
is c-principal (that is, the lower row is a kernel pair), then the upper row is a kernel
pair and (V,v) is c-principal. If furthermore V’ has a global c-support, then since
fis ¢-Cartesian, V has a global c-support. [

Corollary. The category LV[A] admits pullbacks along c-Cartesian equivariant
morphisms. [

Proposition 11. Every equivariant morphism f between two c-torsors is c-Cartesian.

Proof. The internal functor F|(f): F|(V,v) = F;(V',v’) determined by f is a discrete
fibration since fi(V,v") and F;(f)- fi(V',v’) (which is fi(V,v)) are discrete fibra-
tions. Now (¥, v) and (V) v’) being c-principal, Fi(f) is equal to G;(f):G(V)—
G,(V') and, as a discrete fibration between c-discrete equivalence relations, is 7,-
Cartesian [6]. Furthermore, V and V'’ having global c-supports, fis c-Cartesian. [

Remark. This result is the fibered version of the well-known classical result accor-
ding to which an equivari 1t map between two ordinary torsors is invertible.

2.2. The categories Tors(c, A) and A-Cat,

Let A be an abelian group in V. Let us denote by DF/K, A the category of dis-
crete fibrations over K;A and by Grd,.V/K | A the usual category of morphisms of
Grd,V with codomain K| A. The inclusion DF/K; A — Grd, V/K;A determines an
embedding j:LV[A] - Grd.V/K| A which has a left adjoint ¢, given by the
canonical final-discrete fibration factorization

1 Xl
i

A,

W

Y,
® (fl\)\‘
K

Moreover, if X; =G, X, then (y, being final) we have y; =G,y and Y, =G,Y with
w c-invertible, X and Y having the same c-support. In particular, if X has a global
c-support, then Y has a global c-support. So let us denote by A4-Cat,. the full sub-
category of G,/K;A whose objects (U, u,), called A-categories, are such that U has
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a global c-support. Then the following restriction of the previous embedding (again
denoted by the same symbol):

J:Tors(c, A) - A-Cat,

admits a left adjoint (again denoted by ¢,).

Consequence. The underlying set of the group H'(c, A) can be equally described as
the connected components of Tors(c,4) and as the connected components of
A-Cat,.. The following section will be devoted to the investigation of a monoidal
structure on A-Cat,, giving rise to the same group structure on H'(c, 4). It will
appear much simpler than the one on Tors(c, A).

Proposition 12. The functor ¢, : A-Cat,— Tors(c, A) is a fibered reflection, whose
p1-Cartesian morphisms f: (U,u,) - (V,v,) are such that f is c-Cartesian and whose
@-invertible morphisms are such that f is c-invertible.

Proof. Let us consider the following diagram, where the square is a pullback and
g, a discrete fibration:

o1(1)
£1

KA.

Then A, is a discrete fibration, thus y, is final (since y, is final) and gi=o(g 7).
Now if X,=GX, Y,=G\Y, Z,=GZ, X, Y, Z having global c-supports, then
v1=Gw, hy=Gh, ;=G and h =G h. Moreover, h, being a morphism in
Tors(c, A), is c-Cartesian. So 4 is c-Cartesian and T has a global c-support. Thus
h:(T g - GWw)— (X, f;) is the Cartesian map above 4 : (Z, g)~ Y, 0,(1).

Now a morphism & : (U, u;) - (V,v,) is ¢;-Cartesian if and only if the following
square is a pullback:

G,\U G,V
GIV/J \Glx

_ Gk _

G,U GV

(ﬂl(ux o1(vy)

KA.
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But £, being a morphism of c-torsors, is ¢-Cartesian. Then, if the square is a pull-
back, k is c-Cartesian. Conversely, if k is c-Cartesian, then the square is a pullback,
being the image by G, of a square in V having the pair of parallel edges (, k)
c-Cartesian, and the pair (y, x) c-invertible.

The morphism k in A4-Cat, is ¢-invertible when k is invertible. Now if y and
x are c-invertible, then k is c-invertible. Conversely, if k is c-invertible, then
G,k is final and the canonical decomposition of wu; is, up to isomorphism,
¢ (1)) - G, (x- k). Consequently, k is ¢,-invertible. []

Remark. The previous terminology and notation concerning A-Cat. come from
the following fact: when V is the category Set of sets and W is 1, an abelian group
can be trivially viewed as a discrete category endowed with a closed monoidal struc-
ture. Now an A-category in the previous sense is nothing but a non-empty category
enriched in this closed monoidal structure.

2.3. The symmelric monoidal structures on Tors(c, A) and A-Cat,

If A is an abelian group in a left exact category V, then V/A has a canonical
monoidal symmetric structure whose unit is 0: 1 - 4 and the tensor product is given
by the following formula: if (U,u) and (V,u) are in V/A, then (U,w) ® (¥, v) is
(UXV,+-uxuv)

U Vv UxV
\ / luxu

U L
A« * AXA.

This tensor product is clearly associative and symmetric (A being abelian).
Furthermore, for each (U, u), the following commutative diagram:

A
UxU U 1

ux—ul 0

AxA——+—>A

determines two morphisms in V/A4,
(U, u)® (U, —u) < (U,0) - (1,0).

Now in the basic situation and when A is a c-trivial abelian group, the functor d
being left exact, the previous tensor product is stable on d/A.

Let us denote by H%c, A) the group of connected components of d/A.

In the same way the category G,/K,(A) has a tensor product, which is stable on
A-Cat, since the objects with a global c-support are stable under product.
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Let us now consider a monoidal category D with unit 7 and tensor product ®,
and a category C with an embedding j: C — D having a left adjoint ¢. We shall
denote by 7: 15— /- ¢ the natural transformation.

Proposition 13. If, for each pair (D, D') of objects of D the morphism o(nD & nD’)
Is an isomorphism, then there is a canonical monoidal structure on C, defined by
CRC'=p(jC®JC’) and having J=p) as unit.

Proof. Let us sketch for instance the associativity axiom:
CRIEC'®C)=p(JCRI(IC'®C")) = 0(JCRjo(JC'®JC"))
= 9(JpjCRje(JC'®JC") = p(JCR (JC'®JC"))
=p((JCRJC)I®JC"). U
A monoidal functor between two monoidal categories (D, ®) and (D', ®’) is a,

functor f: D — D’ together with a morphism v;: I’ > f(I) and a natural transforma-
tion v,

Vvp,p : f(D)YR (D)~ f(DRD)

satisfying the obvious coherence conditions. It is called strict when v, and v are
isomorphisms.
It is then clear that ¢ together with

e(D@nD')"': 9D D'~ p(DR D’
is a strict monoidal functor and that j together with
n(JjCRJC): jCRC - (CRC)

is a monoidal functor.
Now taking j to be the following functor:

J:Tors(c,A) = A-Cat,

we have the following corollary:

Corollary. There is, on Tors(c,A), a monoidal structure such that ¢, is a strict
monoidal functor.

Proof. Let
Gy o1
GIX EE— GIY DE— Kl(A)
and
Gix v1(g1)
G S G, T — K(A)

be the canonical decompositions of f; and g;, Now let us consider the following
diagram:
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Gy xx)
G(YXT) «——— G(XXS)

| |

G, YxXG T “’le—xGlx— G XxGS

01(N) X 01(2) [f‘xg‘
K AXKA.

The decomposition being stable under products, G,(w x x) is final and conse-
quently is @;-invertible. [

Remark. A simple diagram chasing argument shows that this tensor product on
Tor(c, A) coincides with the usual tensor product of left 4-objects, as defined, say,
in [1]. In particular ¢,(1,0)=(A4, +), the canonical action on A by itself.

Consequence. The group H'(c, A) can be equally described as the group of con-
nected components of Tors(c, 4) and as the group of connected components of
A-Cat,.

2.4. The functor K| and the unit of the monoidal category Tors(c, A)
Before going further, let us say a little more about K,(4). When A is c-trivial,

it is clear that K;A is the cokernel in Ab(Grd, V) of the inclusion ;A :dis. A »
GIA:

0 —— disA G,A KA —— 0.
A E]A

L9
This is a straight definition for K, 4, which is immediately seen to be a ¢-trivial
abelian group. Now the kernel of &, 4 being discrete, £, 4 is a discrete fibration,
and, A having obviously a global c-support, &,4 is thus associated with some
c-torsor. On the other hand, the following diagram commutes:
G1(0)

G,1=1

N A

Ki(4)

and 0:1-— A being c-invertible, G,(0) is final. Consequently, &, 4 is ¢,(1,0).

On the other hand, the construction K, clearly extends to a functor from the
category Ab.(V) of c-trivial abelian groups in V to the category Ab, (Grd, V) of
cp-trivial abelian groups Grd,V.

G,A
L3t

Proposition 14. The functor K, is additive. Furthermore, it is an equivalence of
categories Ab.(V)— Ab, (Grd V).
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Proof. The additivity property is clear. Now let 4; be a ¢y-trivial abelian group in
Grd, V. Then Ay=1. The inverse equivalence is given by mA; which is clearly a
c-trivial abelian group in V since 4, is in Grd, V. [

2.5. The usual first cohomology group

Let E be a left exact and Barr-exact category, with a given abelian group A4 in E.
This abelian group A is e-trivial with respect to the following basic situation:

t 1.

1
It is clear that H%(e, A)=[E(l1, A) is the usual H°(E,A). The group H (e, A) described
by means of A-torsors is just the usual H!(E,A).

Now let us consider the functor ( ),:Grd E— E. It is a fibration whose fibers
are left exact and Barr-exact. The abelian group K;(A) is in the fiber above 1.
Given an object X in [, it determines by change of map along the terminal map
X —1 an abelian group X *(K,(A4)) in the fiber above X. This group is nothing but
K,(A)x G, X. Now a global element of this group in the fiber above X is simply a
functor

G X-K (A xG X

whose second projection is necessarily the identity. Thus
HO( )[X], X*(K(A))) = Grd E(G, X, K, A);

this determines clearly a functor E°° — Ab.
Let gl E denote the full subcategory of E whose objects have a global support and
by @ the restriction of the preceding functor 6: (gl E)°? — Ab.

Proposition 15 (H' as a colimit of H®’s). The group H'(E, A) is the colimit of 6.

Proof. Let U: Ab - Set denote the forgetful functor.

Then A-Cat, is nothing but the Grothendieck category associated with U- 6.
Consequently, H 1(E,A)=710(A-Catc) is, as a set, the colimit of U- 6.

The following commutative diagram:

G X G XxG X
ai+h lglxh
KA K, AXK A

1

insures us that the projections
8(X)—~ H'(E, A)

are group homomorphisms, for every X in gl .
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Finally, the existence of products in gl E gives us a connectivity property in
(gl E)°P which implies that H'(EE, A) is actually a colimit in Ab. [J

2.6. The group extension functor

If h: A — A is a group homomorphism in V, then the functor V/h:V/4A - V/A’
is clearly a strict monoidal functor.

When A and A’ are c-trivial, the restriction of Grd.V/K;h to A-Cat, factors
through A’-Cat,.. We shall denote it by A, for short:

h:A-Cat,— A'-Cat,.

It is obviously a discrete fibration.
On the other hand, let us denote by Tors(c, #) the composite @, - &-j. It is the
usual group extension functor

Tors(c, h): Tors(c,A) = Tors(c, A").
Proposition 16. The functor Tors(c, h) reflects isomorphisms. It is, up to equiva-

lence, a fibration. (These two conditions mean that Tors(c, h) is, up to equivalence,
a discrete fibration.)

Proof. Let us consider the following pullback, where x; and x| are discrete fibra-
tions, X and X’ have a global c-support:

Gy
G X . G,Y
\Qf | \QS
Gy’
x G, X' : G, Y’
/4? j /ﬁ@hm
K A o K A’

and where the vertical unlabelled morphism is ¢,(K;4- x;).

Now x, and x| being discrete fibrations, u is ¢-Cartesian, the same holding for v.
By definition of ¢,, the morphisms ¥ and ¥’ are c-invertible. Consequently, the
following square is a pullback:

W
X——Y
X —— Y

So when v is an isomorphism, such is u.
Let us now consider the following commutative diagram:
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21
KIA T’ KIA/

where the vertical unlabelled map is ¢,(K; /- x,), z; is a discrete fibration, and X
and Z have a global c-support. Thus y is c-invertible and 7 c-Cartesian. Now, accor-
ding to the first part of this proposition, a morphism in Tors{c, 4) above T is neces-
sarily given by the following pullback:

X Y
T ———Z
7

But  is then c-invertible and 7 c-Cartesian. Then T has a global ¢-support, x; - G; %
is a discrete fibration and ¢,(K 4 - x;- G,T) is, up to isomorphism, equalto z;. O

A direct proof that the group extension functor is a strict monoidal functor is
given by a glance at the following diagram:

Gy xy")
G (X xX") — G(YxY")
G(X)YXG(X") XTI Gi(Y) X G(Y")
X)X X o1(Kih-x)) X o (K b x))
KihxKh
K AxXK A K/A'XK A
+1 +
K h
K A KA

since the lower square commutes and since G,(w X ') is final, the final-discrete
fibration factorization system being stable under products.

Proposition 17. The functors ¢, are natural up to isomorphism (i.e. pseudo-
natural). That is, the following square commutes up to isomorphism:
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A-Cat, A’-Cat,
(PlJ {(ﬂl
Tors(c, A) W Tors(c, A").

Proof. Let us consider the following diagram:
Gi{w) Gi(7)

{ %) %lh P1x1)

KA — KA
1

Then G,y and Gt are final and
o1(Kih-x)) = (K B 91(xy)). U

Consequence. The functors I1,(h) and ITy(Tors(c, #)) determine the same group
homomorphism

H'(c,h): H'(c,A)— H'(c,A")
2.7. The connecting functor
Given an exact sequence of c-trivial abelian groups in V,

k h
0 A B - C — 0,

there is determined, as usual, a c-invertible exact diagram in V,

b

AXAXB AXB B C,

1%:]

where b=+ [k p4, pg] is the canonical action of A on B.
Let R,[h] denote the c-discrete equivalence relation given by the left-hand portion
of the previous diagram. We shall define the connecting functor ¢ in the following

way:
0:d/C- Tors(c, A);

given (W, v) in d/C, let us consider the following diagram where the square () is
a pullback:

x
AXX /33 X —— dW

Dy
A Xﬁl lf (%)
b

AxXB —/——3B
Db h

U

C
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and let us set (W, v) = (X, x) which is, as usual, an A-left object. The lower line being
a kernel pair, so is the upper line and (X, x) is c-principal. Furthermore, # being a
c-invertible regular epimorphism, so is o. Then o being, up to isomorphism, equal
to X —>dcX, X has a global c-support and (X, x) is a c-torsor.

Let us now give a direct construction in Grd,.V:

The c-discrete equivalence R,[4], being the kernel equivalence of 4, the left-hand
square of the following diagram is a pullback: (The right-hand square is a pullback
by definition of K;C.)

n .
R, [A] — dis C 1
B I IO
GIB Glh s GIC E]C > K] C

Now in the following diagram the right-hand square is again a pullback:

\

Q
Ri[h] ——=—~ KA

ﬂ

G,B

1

K]k JO

KB K,C

SlB K\h

and g, is the unique map making the left-hand square commutative. The two
global squares are equal. Consequently, the left-hand square of the second diagram
is again a pullback. Thus g, is a discrete fibration since &; B is a discrete fibration.

Remark. We shall denote by &, : G; 4 — R[] the unique map such that A - k; =0
and B;- k, =G, (k). It is a kernel map of #;. We shall denote by g, :dis B— R[]
the unique map such that ¢, ,=0 and f,- ¢, =x;B. It is a kernel map of g,.

The functor J is actually given by the A-torsor underlying the left vertical discrete
fibration determined by the following construction, the upper square being a pull-
back:

(W, 0) — disdW

dis v

R,[A] dis C

hy
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Let Tors./R[h] denote the full subcategory of G,/R;[h] whose objects (U, u;),
with u, : G,U— R [h], are such that U has a global support and u, is a discrete
fibration. The previous construction is thus the composite of two functors,

a/C

Tors./R,[h] Torera”

C

7S Tors. /KA.

Proposition 18. The functor v, is an equivalence of categories.

Proof. The functor w, is fully faithful. Indeed, let (W,v) and (W' v’) be two
objects in d/C, and let f; be a morphism making the following diagram commu-
tative: /

1

(W, v) ————— &,(W",v)

N

R,[A].

Now J,(W,v) and §;(W",v’) are equivalence relations whose quotients are d¥¥ and
dW’. Furthermore, f; is necessarily a discrete fibration. Then, there is a unique
morphism 7:dW — dW’ making the following diagram a pullback:

01(W,v) disdW

ﬁJ Jdis T

o(W,v) —— disdW".

The functor , is essentially surjective. Indeed, given an object (U,u;) in
Tors./R,[A], u,: G, U — R,[h] is a discrete fibration between equivalence relations.
Thus u, is ny-Cartesian (see [6, Proposition 4}), so its factorization nyu; between
their quotients dcU and C is such that the following diagram is a pullback:

G(U) disdcU
ul} [dls ol
R[h — disC. O

Remark. The exactness property of the long cohomology sequence is based, modulo
some connectedness property in n-Tors(c, A), upon the above proposition.

On the other hand, the functor Tors./@; being a discrete fibration, the functor
J is, up to equivalence, a discrete fibration.

Proposition 19. The functor ¢ is a strict monoidal functor.
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Proof. The exact sequence of ¢-trivial abelian groups being clearly preserved by the
functor Gy, the left-hand square of the following diagram is a pullback:

Gk

/ \

G, A R,[h] —— G,B

Sk

» dis C G,C

dis 0
and 6(1,0)=(A4, +).
Let us now show that
o, D®(c, 1) =d((c, N ® (g, 1)).

To do so, let us remark that the following diagram commutes, since we are working
in Ab(Grd,V):

Q1 X0

R,[H] X R, [A] K AXK A
+1J lﬁ’]
R, [h] — KA.

Secondly, let us consider the following diagram in Ab(Grd,V):

Ry[A} X R [A]

5 )® (1) —— disCxdis C

[al {dis +

R\[H] dis C.

h
By definition the square is a pullback, whence we have a factorization
Tt Ri[AI X R [h] = 6,((c, ) ®(c, 1))

which is final since it is a morphism between equivalence relations having the same
quotient CX C. Consequently, the canonical decomposition of +;-90, X0, =0; " +;
is given by (o, - ;) - 7, and thus

I 1)®i(,)=d((c, D®(c 1)).
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Now, given two objects (W, v) and (W’ v’) in d/C, the following total square is a
pullback by definition of &§,(W,v) and &,(W’,v’) and so is the right-hand square by
definition of &;(W,v)Q (W, v')):

5,(W,0) X 3,(W',v") dis dW x dis dW”

71

3,(W,0) @ (W', v")) dis v dis v"

lxl

Ry[A] X Ry[A] —— (6 D® (e, 1) —— dis Cxdis C.

Consequently, the left-hand square is a pullback. Now x; is a discrete fibration
(since dis v x dis v’ is a discrete fibration). Thus, 7; being final, so is 7,. Whence the
result. [

Naturality of the connecting functor
Let the following diagram be a transformation between short exact sequences of
c-trivial abelian groups:

0 A B C 0
o ﬁ{ v
0 A’ - B’ YR C’ 0

Proposition 20. The following square commutes up to isomorphism:

J
d/C — Tors(c, A)

d/y

jTors(c, a)

d/C’ Tors(c, A").

5

Proof. Note that the given transformation yields a commutative square:

R[5, 7]
R[] ——— Ry[#]
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Now consider the following diagram:
Wy
5i(W,y-v) - > R[#]
N
AN w Ri[A7]
N 1
0|(W,v) —— Ry[h]

|

disdW - dis C — dis c’.
dis v dis y

The exterior and the left-hand squares are pullbacks by definition. Whence there
exists a factorization 7;, which is final as a functor between equivalence relations
having the same quotient dW. Consequently, w; is the discrete fibration associated
to R[5, y]- w;. Whence the result. [

2.8. The functor K,, and the higher order cohomology groups
The c-trivial abelian group A4 in V yields a ¢, _,-trivial abelian group K, (A) in

n-Grd_.V, by the following formula: K,(A)=K,(K,_;A) or, equivalently, by the
following cokernel:

0— diS(Kn-lA) T Gn(Kn—lA) Kn(A) —0

&, A

Definition 21. An (n+1)-torsor on A is a ¢,_,-torsor X, on K, 4 such that X,
is c-aspherical. We shall denote by (n+1)-Tors(c,4) the full subcategory of
Tors(c,_,, K,A) whose objects are the (n+ 1)-torsors.

The n+ 1-torsors and the A,-categories
In the same way as at level 1, the final-discrete fibration factorization in (n + 1)-
Grd,.V will give us an alternative description of the group H n+(c, A).

Definition 22. Let us denote by A,-Cat, the full subcategory of G, /K, (4)
whose objects (X, x, ;) (with x,,,: G, X,— K, A) are such that X, is
c-aspherical. Such objects are called A4,-categories.

Now if (X,,x,,) is a A,-category, then the canonical decomposition

GIH—IWn

Gn+1Yn D I Gn+1X

Wl(%u—k .AH

Kn+1A

is such that y, is ¢,_;-invertible and if X, has a global ¢, _;-support, then Y, has
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a global ¢, _;-support. Consequently, if X, is aspherical, then Y, is aspherical and
@,(x,4 1) determines an (n + 1)-torsor. Thus the following embedding:

Ji(n+1)-Tors(c,A) —» A,-cat,

has a left adjoint we shall denote by ¢, , .

Since the aspherical c-discrete n-groupoids are stable under products, the tensor
product of G, /K, , A is stable on A,-Cat.. From the definition of ¢, ,, we
can now conclude that the tensor product of Tors(c,_;,K,A) is stable on (n+1)-
Tors(c, A), and that ¢, ., is a strict monoidal functor and a fibered reflection.

Definition 23. We shall denote the group of connected components of the monoidal
category (n +1)-Tors(c, A) by H"*!(c, A) and call it the (n + 1)th cohomology group
of ¢ with values in A4. It is equally well defined by the group of connected compo-
nents of the monoidal category A4,-Cat,.

Proposition 24. The group H"*''(c, A) is the colimit of the abelian groups
Hc,[X,], X.}(K, . A)) with X, aspherical.

Proof. The group H'(c,[X,], X5 (K,,;A)) is the group (n+1)-Grd.V(G,, (X,),
K,.1A) and the proof is the same as that of Proposition 15. O

The group H"*' as the colimit of the H" of the fibers

Let E be a left exact and Barr exact category; we are now going to show that
H""1(E, A) is the colimit of the H"(( )o[X], X *(K,A4)), with X having a global
support, that is the colimit of the H" of the fibers of the following fibration,
restricted to the objects of E having a global support:

( )o: Grd E— E.

Indeed, given a left exact fibration ¢ :V — W, instead of considering the c-discrete
groupoids, we could have considered a more rigid notion, namely that of internal
groupoids in V such that the images by ¢ of their structural maps are identities
(instead of isomorphisms). Let us denote by Grd ¢ the full subcategory of Grd, V
with such objects. In fact, Grd ¢ is the Grothendieck category associated to the
pseudo functor:

WP - CAT
associating to each object W in W the category Grd c[W] of internal groupoids in

the fiber c[W]. Whence the following commutative diagram, with the horizontal
functor a Cartesian embedding:

Grdc

N A

V.

Grd, VvV
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In the case c=( )y, this functor becomes
{:Grd( )p—2-Grd E

and is furthermore essentially surjective (given an internal 2-groupoid in E, it is
always possible to relabel, up to isomorphism, the object of objects of its structural
diagram). It is therefore a Cartesian equivalence. In the same way, the pseudofunctor
E°P — CAT, associating to each object X in E the category (n—1)-Grd(( )o[X]) of
internal (n— 1)-groupoids in the fiber ( ),[X] has a Grothendieck category denoted
by (n—1)-Grd( ), with a Cartesian equivalence

(pot1:(n=1-Grd( )o— n-Grd E.

Proposition 25 (H" ™! as a colimit of H"’s). For each left exact and Barr-exact cate-
gory E the group H"*'(E, A) is the colimit of the groups H"(( )o[X1, X *(K,A)),
with X having a global support.

Proof. Let us consider the pseudofunctor
6,: (gl E)°® - CAT

associating to an object X the category X *(K;A),_;-Cat and let us denote by L its
associated Grothendieck category. Now it is clear that K,(K,4)=K, ,;A. Thus
there is an embedding y making the following diagram commutative:

Y

L ——————— A4,-Cat

|

(n—1)-Grd( ) T__) n-Grd E
n—1

where the unlabelled arrow is the obvious forgetful functor which associates to every
X*(K,A),_,-category its underlying internal (n— 1)-groupoid in ( ){X]. This y is
actually an equivalence of categories since so is &,_.

On the other hand, the functor dis:SET — CAT has a left adjoint 71, which is
actually a left 2-adjoint between the discrete 2-category SET and the 2-category
CAT. Now L is the lax colimit of 6,, which is preserved by the left 2-adjoint /7.
Consequently IT,L, as a set, is the colimit of the ITy- 8,[X]=H"(( )[X], X *(K,A)).
Furthermore, I1,(y) is an isomorphism and, as a set, H"*! is the colimit of the H".
The end of the proof (that it is actually a colimit in Ab) is the same as in Proposition
15. O

Remark. In the absolute situation (E Barr-exact) it is well known that a morphism
between two torsors is always invertible. Is there an analogous result at level n? Let
us briefly point out without detail that a morphism between two (n+ 1)-torsors is
an n-functor which is always a weak n-equivalence (see [8]).
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2.9. The higher-order group extension functors

Given a group homomorphism 4#: 4 — A" between two c-trivial abelian groups,
the morphism X, ((#): K, . A - K,,, | A allows us to define, in the same way as at
level 1, a functor

h:A,-Cat,— A,-Cat,
which is again a discrete fibration, preserving the tensor product. We have again a
functor (n+1)-Tors(c,h)=¢,,,- H-J:

(n+1)-Tors(c, k) : (n+1)-Tors(c,A) - (n+1)-Tors(c, A").

Following the definition of ¢, ; and the results at level 1, it preserves clearly the
tensor product and reflects isomorphisms. It is again a fibration up to isomorphism.
To see this, mimicking Proposition 16, let us consider the following pullback:

Wn
X, —— Y,

Tn Tn

T,

¥n Zn

with v, c,_,-invertible and 7, ¢, _;-Cartesian, X, Y,, Z, being aspherical. Then 7,
is ¢, _,-Cartesian and thus 7, has a global c,_;-support, and y, is c,_;-invertible
and thus 7, _, is aspherical. Consequently, T, is aspherical.

2.10. The higher-order connecting functor

Let 0— A 5 B> C—50 be an exact sequence of c-trivial abelian groups.
Then Kk K,h
0— K, A4 K,B

K,C——0

is an exact sequence of c,_;-trivial abelian groups.
We can now define a higher order connecting functor

d:C,_,-Cat.— (n+1)-Tors(c, A)

mimicking exactly the construction at level 1 : given (Y,,_,,»,) in C,_-Cat,, let us
consider the following diagram where the square * is a pullback:

Xn

Op
K,AxX, - X, — G, (Y,
X
KnAxénJ }én (*) J}'n
by
Ko XKy B = KyB e KiC
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and let us set 6(Y, _1, y,) = (X, x,). It is a left K, A-object. Furthermore, K, 4 being
a ¢, -invertible regular epimorphism, so is g,. Now X,,_, is isomorphic to ¥,_,,
which implies, on the one hand, that (X,,, x,,) is a ¢, _;-principal left object and that
X, has a global c¢,_;-support, on the other hand, that X, _; is aspherical. Conse-
quently, X, is aspherical and (X,,x,) an (n+ 1)-torsor.

Again there is a direct construction in (r+1)-Grd,V: the lower line yields a
c,_1-discrete equivalence relation R, , [#], which is the kernel equivalence of K, A.
It is given by the following pullback:

R, . [h] dis K, C
ﬁn+ll
Cn1KyB 23 Goii Ky C.

We have again a morphism g,,,: R, . ([#] = K, ,; A making the following square a
pullback:

On+1

Rn+1[h] I(n+11‘1

ﬁml TK,,H/(

G, K,B ———» B.
n+15n ens1B n+1

Then the functor J is given by the (7 + 1)-torsor underlying to the left vertical dis-
crete fibration determined by the following diagram:

6n+1(Yn—layn) dis Gn(Y;l—l)
dis y,
R, . [h] dis K, C
On+1
Kn+1A‘

If we denote by (n+1)-Tors./R, , [A], the full subcategory of G, ,/R,, . [h] whose
objects (Z,,z,,1), with z,,,,:G, . Z,— R,,[h], are such that Z, is aspherical and
Z, 41 & discrete fibration, then the previous construction is the composite of the two
following functors:

C,_-Cat, o (n+1)-Tors./R, , [#] (n+1)-Tors./K, .1 A.

—_—
(n+1)-Tors./0p41

Again y, is an equivalence of categories, again J is a strict monoidal functor.
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Finally, these higher order connecting functors are pseudonatural with respect to
transformation of short exact sequences.

2.11. The long cohomology sequence

Given a short exact sequence of c-trivial abelian groups in V,
0—a5 B c—o,
we have thus a long sequence of group homomorphisms
i H'(e, A) 25 H (e, B) 5 H (e, ) 2 H ™ (¢, 4) X5 HP (6, B) — ---

where, for every f, the morphism f* is I7y(n-Tors(c, f)) or I1,(f) and 8 =11,(J).
That A*- k* is zero is a consequence of the fact that &- k is zero.
That d- h* is zero is a consequence of the following proposition:

Proposition 26. Given an exact sequence of abelian groups in \, there is a unique

morphism A, : G A xdis B— R\|[h] making the two following squares pullbacks:
p(A4) . pi(B) .
GlA — GlA XdlSB > dlSB
|
£1A L1, dis h
|
i

R[]

KA dis C

where p,(A) and p,(B) are the projections.

Proof. The image of the short exact sequence by the functors dis, G, and K| gives
a ‘nine lemma’ diagram in the abelian category Ab(Grd,V). Then, provided that
A1=G A xdis B— R,[A] is just ]k, gy, this result is pure diagram chasing. U

Then any pullback of dis 4 -disv along A; factorizes through &4 and conse-
quently d- A* is zero at level 1. The proof is exactly the same at level 7.

Finally, that £*- 3 is zero is a consequence of the following: Consider the commu-
tative diagram

B
G,B ———— R,[H] — disC

KB T KA.

The composite of the morphism K, k-9, by the pullback of any morphism disv
along A, factorizes through & B. Consequently, k*: 3 is zero at level 1. The proof
is obviously the same at level n.
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3. The exactness property of the long cohomology sequence
3.1. The connectedness of n-Tors(c, A)

In order to prove the exactness of this long sequence, we need first to study the
connected components of n-Tors(c, 4).
The aim of the following paragraph is to show that in any category of the form

n-Tors(c, A), if there are two morphisms
S g

X— Ve——1Y,

then there are two morphisms:
) o
X <—f— Z—Y.
Consequently, two objects will be in the same connected component if and only if
the second situation is satisfied.

Unfortunately, if n>1, the category n-Tors(c, 4) does not admit pullbacks in
general and therefore we must find another method. This will be to exhibit, in any
category n-Tors(c, A) and for any object X in this category, what we could call a
universal co-unit interval or a cohomotopy system, that is, an object Coh X and a
pair of morphisms

Coh X X.

w
Then the requirement concerning the connectedness will be obtained by the fol-
lowing pullback which will always exist:

178
Z — CohV
[f5g'] [[a,w]
XXY VXV.

These cohomotopy systems are all the more interesting as, when E = A is abelian
they are exchanged by the new denormalization equivalences, with the universal
classifiers of chain homotopies.

The connected components of Tors(c, A)

There is no problem with the category Tors(c, 4) since it admits pullbacks. Indeed,
given two equivariant morphisms (X, x) — (V, U)A(Y, ) between c-torsors, the
morphism f being certainly c-Cartesian, there is a pullback in LV[A]:

7

S
(Z,5) — ()
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The morphism f' is again c-Cartesian and (Z, 2) is a c-torsor since (Y, y) is a c-torsor.
Here, at level 1, the cohomology system is reduced for each object V to

V—

The connected components of 2-Tors(c, A)

The previous proof fails at level 2. Indeed, if (Z;,z;) denotes the analogous of
(Z,7) in a similar diagram, but with an index 1 everywhere, then (Z, z;) is certainly
a co-torsor, but ¢y(Z;) = Z, fails to have a global c-support in general, since neither
Jo nor g, are necessarily c-Cartesian, and Z, is no more in general c-aspherical.

However, we have a cohomotopy system in Grd,V, given by

g1
ComV, —3 V.
71

We are going to show that it determines a cohomotopy system on A4,-Cat. and
2-Tors(c, A).

First, we saw that Com V| is aspherical when V; is itself aspherical. Now Com is
a left exact functor and extends to a functor

COM : Grd(Grd, V) = Grd(Grd, V).

When V, is in 2-Grd.V, COM V¥, is no more in 2-Grd, V. But ¢ being a left exact
fibered reflection, the following embedding:

Grd, V- Grd V

has always a right adjoint (7) (see [4]), and consequently COM™ V, is again in
2-Grd,V. Thus the left exact functor Com with the cy-Cartesian natural trans-
formations ¢ and 7 extends to a left exact functor COM™: 2-Grd,V — 2-Grd, V
with ¢,-Cartesian natural transformations ¢ and %:
g,
COM™ V, —3

13

V2

with &, and 7, ¢;-Cartesian above | and 7,.

Now if V,=G,V,, then COM™ V; is just G,(Com V}). If V,=K, A, then V=1,
Com V,=1, and COM™(K,A4)=K,A. Whence, for any object (V;,0,) in A4,-Cat,,
the following commutative diagram in 2-Grd, V:

Gy(oy)
Gz(com \/1) — G2 Vl
Ga(1y)
COM”™ vzl luz
1

K,A KA.

1

Then (Com ¥}, COM™ b,) is an object in A,-Cat,. (denoted by Com(V}, v,) for short)
which determines a cohomotopy system in A4,-Cat,:
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gy
Com(Vl, Uz) —_— (Vl’ Uz).
7

When furthermore v, is a discrete fibration (that is underlying to a 2-torsor), then
G,(o;) is a discrete fibration (since o, is cy-Cartesian) and Com(V), v,) is under-
lying to a 2-torsor. Thus the previous cohomotopy system is stable on 2-Tors(c, 4).

Now the functor Com being left exact, its extension to A;-Cat, is a strict monoidal
functor. Finally the natural transformation Com(V},v,)— Com ¢,(V},v,) yields a
natural transformation

@, Com(V}, v;) = Com @, (Vy, v2)

which makes the extension of Com to 2-Tors(c, 4) a monoidal functor.

Now, given (Xl,xz)i» Vi, 02) A (Y}, y,) in 2-Tors(c, A), the morphisms f; and
g, are certainly cy-Cartesian, and thus so is f; X g,. Whence the following pullback
in the category of left K (A4)-objects:

4]
(ZI’ZZ) Com(Vl, U2)

[ﬂ’gi]l ‘[01,1'1] (*)

(X1, %) X (Y1, 32) _fl—x?’ V1, 02) X (V1, 03).

The internal functor y, is ¢y-Cartesian and Com(Vy,v,) is in Tors(cy, K;A), so

(Z,z1) is in Tors(cy, K1 A). This (Z,,z;) will be a 2-torsor when furthermore Z, has

a global c-support. This object Z, is the vertex of the following pullback in V:
¥o

Zy———— mV,

[féy g(l]][ [[dO! dl] (**)

Xy XY, _f_ox_go—) VoxX V.

But the canonical decomposition of [d,d;] is the following:

[do, d1]
mV, —— VyX Vo — Vox Vy
since the above [d,d;] is clearly c-invertible and the right-hand morphism is
c-Cartesian above the diagonal cV,— cVy X cV,.

Now V, has a global cy-support if and only if this [d,, d,] is a c-invertible regular
epimorphism, thus [dy,d;]:mV; > VyxV, is c-full. Then [f;, g] is again c-full,
and X, x Y, having a global c-support, Z, has a global c-support. Consequently,
(Z;,2;) is a 2-torsor.

The connected components of 3-Tors{(c, A)
The previous construction is not yet sufficient at level 3. Indeed, let us consider,
in the category 2-Grd V, a pullback similar to the pullback (%), with objects indexed
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by 2 instead of 1. There is on Z, a structure of c¢,-torsor. Now Z, appears in a
square similar to (*+) but indexed by 1 instead of 0. Thus, if ¥, has a global
¢;-support, then again [dy, d,] is cp-full and Z, has a global ¢,-support. But we can-
not conclude in general that Z,, which is given by the following pullback, has a
global c¢-support and therefore that Z, is c-aspherical:

Z > Vo

|

XoxYO W VoxVo.

In order to overcome this obstruction, we need the following construction which will
allow an iteration process to work:

Definition 27. Given an object V, in 2-Grd V, let us call cohomotopy 2-groupoid
associated to ¥, the object of 2-Grd,V defined by the following pullback:

a
Cth V2 —2> Com VZ

TiJ {Tz
G2

COM™ V, V,.

It determines a cohomotopy system

[24
Coh, V, —=3 V,
w2

where @, is the ¢,-Cartesian map g, - g; and w, the ¢;-Cartesian map 7, 75.
The functor Coh,, as a pullback of left exact functors, is itself left exact.

Example. In the case V=Set and W =1, if V, is an ordinary 2-groupoid, Coh, V,
is, up to isomorphism, the groupoid whose objects are the 1-morphisms of V5,
whose 1-morphisms are the following squares:

B —

w

_—

and whose 2-morphisms are pairs of coherent 2-morphisms between such 1-mor-
phisms. That is the 2-category of quintets in [16], which classifies the pseudonatural
transformations with codomain V5.

Proposition 28. When V, has a global c\-support (resp. is c-aspherical) then
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Coh, V, has a global c,-support (resp. is c-aspherical). Moreover, the morphism
cilay, wy] ¢ (Cohy Vo] = Vi X V) is cp-full (resp. in X)).

Proof. The morphism «, being c;-Cartesian and V, having a global ¢,-support,
Coh, ¥, has a global c;-support. Let us now consider the following commutative
diagram:

CI(Cth Vz) Cl(Com Vz):sz
|
, 7| [do. )]
7 |
4
Com Vl XCO Com VI 0] Xe 01 Vl XCO Vl
q1 q1
+
Com Vl o - Vl

where the g, denote the second projections. The total square is a pullback as the
image by c; of a pullback. The lower square is a pullback since the vertical edges
are c;-invertible and the horizontal ones are c;-Cartesian. Whence there exists a
morphism 7, making the upper square a pullback. Now V; has a global ¢;-support if
and only if [dy,d,] is a (c;-invertible) regular epimorphism. Thus 7, is a ¢;-invertible
regular epimorphism. Consequently, the canonical decomposition of ¢[a,, w,] is
the following:

¢;(Coh, V)

3

g1 XT
Com ¥} X,, Com ¥; ——— Com V; x Com ¥} ——— V;x V,

and then Cla,, w,] is ¢y-full.

Now ¢y ¢|[a;y, w,] =[dg, d,]: mV— Vyx V. So, when V, is aspherical, [dy, d,] is
c-full and c¢[e,, w,] in 2,. Consequently, ¢;(Coh, V;) is aspherical. Thus V,
aspherical implies Coh, V; aspherical. [l

We are now going to show that this cohomotopy system can be extended from
2-Grd,V to A,-Cat, and 3-Tors(c, 4). The functor Coh, being left exact extends to
a functor COH, : Grd (2-Grd,.V) - Grd (2-Grd, V). Exactly as it is the case at level
2, we then construct a left exact functor

COH3 : 3-Grd, V - 3-Grd, V
with ¢,-Cartesian natural transformations &; and ; above @, and w;:
as
COH; V; ——3 ;.
@3

Now if V;=G;V,, then COHjV; is just Gy(Coh, V3). If V3=K;3A4, then V,=1 and
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COH;V; =K, A. Whence, for any object (V>,v;) in A,-Cat,, the following commu-
tative diagram in 3-Grd, V:

Gi(a)
G3(C0h2 Vz) _ G3 V2
3(w)
COH; 03} b3
1
KA K;A.

Then (Coh, V,, COH™V;) is an object in A,-Cat. (denoted by Coh,(V,,v;) for
short) which determines a cohomotopy system in A,-Cat,,

a
Coh,(V3, vs) ?2 (Va, U3).
2
When furthermore vy is a discrete fibration, G;(@,) being a discrete fibration,
Coh,(V5, vy) is underlying a 3-torsor and the previous cohomotopy system is stable
on 3-Tors(c, A). Again Coh, is a strict monoidal functor on A,-Cat,. and a monoidal
functor on 3-Tors(c, A).
Now, given (X3, x3) N V3, 03) A (Y,, y3) in 3-Tors(c, A), the morphisms f, and
g, are ¢,-Cartesian, and so is f, X g,. Whence the following pullback in the category
of left K,(A)-objects:

(Z3,23) Coh,(V3, v3)

[fl/a gé]l j[aly wZ]

(X5, x3) X (Y, ¥3) T (V2, 03) X (V2, 03).

Now w, is ¢;-Cartesian and Coh,(V,, v3) is in Tors(c;, K> A), so (Z,,z3) is in
Tors(c;, K, A). This (Z,,z;) will be a 3-torsor when furthermore Z, is aspherical.
Now Z, is the vertex of the following pullback:

W
Z, ——— ¢,(Coh, V)

[ﬂ‘gill {Cdaz,wz]

X, xY; W V) x V.

When V, is aspherical, ¢ [, w,] is in 2|. So [f{, g;] is in 2. The product X; X Y;
being aspherical, so is Z;.

The connected components of (n+1)-Tors(c, A)
Let us suppose we have defined a cohomotopy system in n-Grd_.V,

ap
Coh, ¥, == ¥,
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satisfying the following conditions:

(1) the functor Coh,, is left exact;

(2) the natural transformations «, and w, are c,_-Cartesian;

(3) if V, is aspherical, then ¢,_,le,,®,] isin 2, ;.

Clearly, this implies that if V, is aspherical, then Coh, ¥, is aspherical.

Now, mimicking exactly what we did in the last section, we are going to construct
a cohomotopy system in (n+1)-Grd,V satisfying the same conditions.

First, the functor Coh,, being left exact, and the natural transformations «, and
w, being c¢,_;-Cartesian, extend to a left exact functor COH}: (n+1)-Grd, V —
(n+1)-Grd,.V and to c¢,-Cartesian natural transformations &,., and @, .

Definition 29. Given an object V, ., in (n+1)-Grd.V, let us call cohomotopy
(n+ 1)-groupoid associated to V,,, |, the object defined by the following pullback in
(n+1)-Grd, V:

Cpi
Cohy 4y Vi > Com V4

.
Tn+l T+l

COH, Vo1 —3 Vasi-

Uy o+l

The functors Com and COH,, being left exact, so is Coh, .. This construction
yields a cohomotopy system
Op 1
Coh,,y Vo) —— Viy
Wy i1
where «,,,  is the c,-Cartesian morphism o,,. - @, and w, ., is the c¢,-Cartesian
morphism &, - 7,;. Finally, the canonical decomposition of ¢,[a, ,;,w,.] is
the following:

¢,(Coh, V1)

Gy X Wy
Coh, V, x,_, Coh, V;, —— Coh, V, Coh, V,, ——— V, XV,

where 7, is the last edge of the following pullback:

.
xy

cn(COthrl Vi) c,(ComV,, )=mV,

f,,l [do, di]

Coh, ¥, X,y Coh, V === Va Xp-1 V.
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Furthermore, ¢,_;- ¢ la, 1, 0,011 =¢ 110, wy].

Consequently, if V,,, is aspherical, then c,{e, ;, w,,] is in X,.

Now Coh, being left exact, Coh,1=1, and the same reasons, as in the last
section, apply to extend this cohomotopy system in the same way to A4,-Cat,. and
(n+1)-Tors(c, A).

Finally, the same proof holds for the same result about connectedness in (7 +1)-
Tors(c, A).

Remark. The passage from Com X, to Coh, X, (that is, from ‘natural transforma-
tions’ to ‘pseudonatural transformations’) is based upon the slogan: ‘‘put a 2-mor-
phism wherever there is an equality’’.

The passage to higher order generalizations is based upon the same slogan: ‘‘put
a higher order type of morphism wherever there is an equality’’. This is clearly the
meaning of our construction of Coh, ,; V¥, ,: by taking the pullback of Com ¥V},
with COH,, V,,, we add a higher order type of morphism (Com V, ,|) wherever
there was an equality (COH, V. ).

When E= A is an abelian category, the equivalence N, between n-Grd A and
C"(~) exchanges Coh,(X,) with the universal classifiers of chain homotopies with
codomain N, (X,).

The connected component of 0 in A,-Cat,

Let (V,,v,,,) be an object of 4,-Cat, lying in the connected component of (1, 0).
Then ¢, ,1(V,,v,.;) is in the connected component of ¢, ,(1,0) and consequently
we are in the following situation:

(van+l) cTT T (Zn’zn-H)
|
M T2
|
1
On o1V U)X X)) (K Ar£,014)

with X, aspherical and x,,.,: G, (X,)— K, A a discrete fibration. Let (Z,,z,.)
denote the vertex of the pullback of n, along y, in G,,,/K, , A. Let us show that
Z, is aspherical. The functor y, is ¢, _,-Cartesian, thus so is 7, and consequently Z,
has a global c,_,-support. On the other hand, 7, is ¢,_-invertible, and so is y,.
Then Z,_,, being isomorphic to X,,_;, is aspherical, and thus Z, is aspherical.

Therefore, an object (V,,v,,,) in 4,-Cat, is in the connected component of 0 if
and only if there is an object (Z,,z,,) in A4,-Cat, and two morphisms

(Vrn Un+1) - (Zm zn+]) - (KnAa 8n+1A)-



The tower of n-groupoids 175
3.2. The exactness property of the long cohomology sequence
Exactness at B

Proposition 30. The following sequence of abelian groups is exact:
k* h*
H'1+1(C,A) —_ Hn+l(C’B) AN Hn+l(c’ C)
Proof. Let (V,,v,,,) be an object in B,-Cat, such that A(V,,v,. ) is in the con-

nected component of 0, and let us consider the f?llowing diagram satisfying
. n &n
8n+1C'Gn+1(gn):Kn+l(h)'Un+1'Gn+l(fn) with Vn Zn KnC:

Gn+l(gn)
Gn+1(Zn)
Gn+1(pn)//
/
/
//
Gn+l(‘7n) Gn+lKnh
Gyoi(1y) ~ o G, K B G K
AN
\\\ G’H—lV;? en1 B &1 C
Yn+1 \\ Um ‘
Ky Ar——— K, B Kn+1C

Kn+1k Kn+lh

and where Y, is defined by the following pullback:
2
&n

K,B K,C.

K, h

Now K,k is a c,_,-invertible regular epimorphism and thus so is p,. So if Z, is
aspherical, then Y, is again aspherical.
Moreover, we have the following equalities:

Kn+1(h)' £n+lB° Gn+l(qn) = £n+lC' Gn+l(Knh)' Gn+1(Qn)
= 8n+1c' Gn-H(gn) . Gn+\(pn) = Kn+1(h) CUpyye Gn+1(fn) : Gn+1(pn)-
Consequently,
K,o(B) [, Gn+1(fn‘Pn)‘5n+1B' G,.1(g,)] =0.
Whence there exists a morphism y,.: G, (Y,) —» K, ;1A such that

Ko 1tk) Yot = Vpy Guii(fy D) — €1 B- Gy 1(@r)
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or, equivalently,
Vpit® Gui1(fn Pn) =Ky n(K) - Vi1 = €41 B- Gpii(qy)-

This last equality implies that, in H"*(c, B), we have
Vs Ups1) = K* Vs Vi 1)-

The foregoing proof is only valid for n>0. We must also show the exactness of
Hc, 4A) =X HO%,B) 2 Hc,0).

But d/C admits pullbacks and the proof is straightforward. [J

Exactness at C

Proposition 31. The following sequence of abelian groups is exact:

H"(c,B) s H"(,C) —2 H"*\(c, A).

Proof. Let (V,_,,v,) be an object in C,_,-Cat, such that 6,(V,_i,v,) is in the
connected component of zero, and let us consider the following diagram with
On+1* Xn+1® Gn+1(f;1) =6n+1A . Gn+](gn):

Gn+l(fn) €n+1 .
Gn+lZn 5n+1(Vn—bUn) dis Gn(Vn—l)

N
Gn+1(gy \\Zn+1 /
pn+l(A) > pn+](B) dis Uy

G, K,A "~ Gy, K,Axdis K,B——— dis K, B

Xn+1
e A4 Ani1 dis K, h

Kn+1A On+l Rn+l[h] A et diSKn'

The lower left-hand square being a pullback, there is a unique factorization
Zn+1: Gn+IZn - Gn+1KnA x dis KnB’ such that pn+1(A)' Ln+1= Gn+1(gn) and /1”+1 ’
Zn+1™Xn+1" Gn+](fn)-

Consequently, disK,h-[p,+1(B)- 2,.11=4disv,- 6,1 G, 1(f,;). The image by
the functor 7, : (n+1)-Grd,.V — n-Grd.V of this last equation yields a commutative
diagram in n-Grd,V:

B +1° G+ 1(fa))

GnZn—l GnV;z—l
Ty Pn+1(B) 201 1) Uy
K,B o K,C

and consequently we have h*(Z, _,, (D, 1(B) - 2,+.1)) =V, _,v,) in H'(¢,C). [
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Exactness at A

Proposition 32. The following sequence of abelian groups is exact:

H"(c,C) —2 H" (¢, 4) > H"*'(¢, B).

Proof. Let (V,,v,,,) be an object in A,-Cat. such that £(V,,v,,,) is in the
connected component of 0, and let us consider the following diagram with
Kn+lk' Vyyre Gn+l(fn):8n+lB' Gn+l(gn):

R, [h] ———— dis K, C
A

//
// B Kp1C
//

Grl+l(gn) Gn+I(Knh)

Gn+IZn Gn+1KnB G/1+1Knc
Gl |

Gn+]Vn Er1B £, 11C
Un+ll

KyoAdr———— KrH—lB

Ky (k) K €.

Kn+l(h)

Now ¢,.,C- G, (K,h-g,), being factored through K, , (A - k), is zero, and there
is a morphism y,.,:G,,,Z,—disK,C such that x,,,C-y,,,=G,. (K,h-g,).
Whence there exists a morphism z,,,:G,Z,—~ R, [#] such that B,,,-2,,,=
G, (g,). It is easy to check (K, (k) being a monomorphism) that

Qpni1" Tnst = Vpyr Gn+l(fn)‘

Now by Proposition 18, (Z,,0,. " 2,,) 1S, up to isomorphism, in the image of
J,+1- Then the previous equation means that (V,,v,. ) is in the image of 3.

The above proof is only valid for n>0. Let us show now that the following
sequence is exact:

0 ——— H% A) X5 1O B).

Let (W, v) be an object of d/4 whose image by & is in the connected component
of 0. Then, considering the following diagram:

aw’
/ \
aw 1
v 0 IO
A 3 — B,

we have necessarily v- df=0 and (W,v)=0in H%c, A). O
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4. The classical theories
4.1. Yoneda’s Ext”

Let A be an abelian category and C an object of A. Then the category A/C, though
no longer abelian, is an exact category. An abelian group in A/C is necessarily given
by a projection 4 x C — C with 4 any object of A. Let C*(A) denote this abelian
group in A/C. We are now going to show that the category n-Tors(A/C, C*(A)) is
equivalent to the category EXT"(C, A) of n-fold extensions of A by C and that
consequently the groups H"(A/C, C*(A)) and Ext"(C, A) are isomorphic.

Let us first recall that there is, for any integer n, an equivalence making the
following diagram commutative:

n-Grd A ? C"(A)
JTnl

an—l

(n—1)-Grd A == C"~(A)

n-1

( )n—l

where C"(2) denotes the category of abelian complexes of length nin A and 7,,_,
the truncation of the last element of an n-complex. This functor 7,,_| has a right
adjoint Kr, (which is the augmentation by the kernel) equivalent to the functor G,,.

Now, any internal abelian group in A is reduced to the data of an object 4 in
A. The image of the group K, A in n-Grd A by the functor N, is then the following
n-complex, we shall again, improperly, denote by K, A:

A—050---—>0-0.

The category A/C is the fiber above C of the fibration Ty:C'(A)— A. Con-
sequently, Grd(A/C) is equivalent to the category Cz(/A)(. of 2-complexes in A
ending with C. The functor corresponding to ( )g, is just the restriction of
T,:C*(n).— A/C. Tts right adjoint, corresponding to G,, is the augmentation of
a l-complex by its kernel.

More generally, according to the new denormalization theorem, the category
n-Grd(A/C) is equivalent to the category C"*!(A), of (n+1)-complexes ending with
C whose morphisms are just transformations of (n+ 1)-complexes with 1. at C.
The functor ( ),_;:n-Grd(A/C)— (n—1)-Grd(A/C) is equivalent to the restric-
tion of T,: C"*'(A).— C"(A),, its right adjoint being again the augmentation of
an n-complex by its kernel. Therefore, an object of n-Grd(A/C) with a global
( ),_;-support corresponds to an (n +1)-complex which is exact at level n and an
aspherical object of n-Grd(A/C) corresponds to an (n+1)-complex which is exact
at any level.

On the other hand, a left action of the group K,A4 on an object of C"(A) is
obviously equivalent to an augmentation of this n-complex by A. This action is
T, ,-principal if and only if this augmentation is actually a kernel augmentation.
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Consequently, the category of left K, (C*A)-objects in n-Grd(A/CY) is equivalent
to the category C”"*2(C, A) of (n+2)-complexes between 4 and C whose mor-
phisms are transformations of complexes with 1, at A and 1~ at C. The category
(n+1)-Tors(A/C, C*(A)) is then equivalent to the category EXT"t(C, A) of
(n+1)-fold extensions of 4 by C, and the groups H"*'(C, A) and Ext"*}(C, A) are
isomorphic.

4.2. Cohomology of groups in the sense of Eilenberg-Mac Lane

It is now possible to come back to our starting point, namely the cohomology of
groups.

The category Grp of abstract groups is an exact category. We are now going to
show that the interpretation of the cohomology groups of a group, determined by
the construction given in this paper, is, up to isomorphism, the same as those given
by Holt [22] and Huebschmann [23] by means of crossed n-fold extensions.

Let Q be an abstract group. Then the category Grp/( is again an exact category.
Let (A4,z,+) be an internal abelian group in Grp/Q:

+

Q A

- AXgA.
The pullback of @ along the map 1— Q determines an abelian group M =Kera,
on which Q is acting through z: ¢- m=2z(gq)- m-z(g~!). Conversely, given a left
O-module M, the semi-direct product M X Q determines an abelian group in
Grd Q. Let us denote by Q*(M) this abelian group. Then H%(Grp/Q, Q*(M)) is
nothing but the group of the sections of M Q — Q, that is, the group of deriva-
tions Der(Q, M). The aim of this section is to show that the group H"(Grp/Q,
QO*M) is isomorphic to the group Opext”(Q, M) of [23] (see also [22]).

It is well known that Grd(Grp) is equivalent to the category X-Mod of crossed
modules, where a crossed module [10] (C, G, @) is a pair of groups (C, G), endowed
with a left action of G on C, written (g, ¢) — éC and a homomorphism d: C— G of
G-groups where G acts on itself by conjugation. Moreover, the map d must satisfy
b-c-b~'=9Y¢ for each (b,¢) in Cx C. The notion of morphism is natural. Let
( ) be the forgetful functor X-Mod — Grp which associates G to (C, G, 9).

Let N:Grd(Grp)—» X-Mod denote this equivalence. Clearly ( )o-N=( ), and
N-G(G)=(G,G,id) where G is acting on itself by conjugation. We shall denote
again, improperly, this functor N- G, by G,.

A natural problem, now, is to determine to which category the category
2-Grd(Grp) is equivalent.

Definition 33 (see for instance [23]). Let us call a crossed 2-fold complex a sequence
Czﬁ-» C 2, G of group homomorphisms such that

(1) (Cy,G,9,) is a crossed module;

(2) G, is a G-module and 9, a morphism of left G-action;
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(3) 81-8,=0;
(4) 9, =¢, for each (¢,,¢,) in C;xC,.

This last condition means that C, is actually a G/d, ¢,-module. A consequence
of (2) and (4) is that 3,C; is in the center of C;. The notion of morphism between
two crossed 2-fold complexes is the natural one. Let us denote this category by
2-X-Mod.

Proposition 34. The categories 2-Grd(Grp) and 2-X-Mod are equivalent.

Proof. The categories Grd(Grp) and X-Mod being equivalent, it is sufficient to
prove that the standard construction applied to:

Grp X-Mod

1
is equivalent to 2-X-Mod. For that let us study what is a ( ),-discrete groupoid: it
is a sequence of group homomorphisms,

K,

——K

where (Cy,G,d,) is a crossed module, 9, -dy=9,-d,;=9, (K|,G,d) is a crossed
module, d, and d, are morphisms of crossed modules, K, is the pullback of 4
along d; in X-Mod.

Let C, denote Ker d; and 9, the restriction of d, to C,. Then clearly, 4, -3,=0,
C, is a G-module and 3, a morphism of left action.

Now k- k- k' =%k for each (ky,k}) in K| XK. If k; is in C,, then d(k,)=
d,-d;(k;)=1 and G, is in the center of K;. Thus,

ey = 300Ce, = 5501+ ¢y- spC1 ' = €y

Furthermore, K, is isomorphic to C, X C; by &y — (k| -sod (ki Y), di (k).

Conversely, given a crossed 2-fold complex, let K; be the product of C; and C|
as left G-objects. Then it is easy to check that, defining d(c,, ¢) as d,(c;), we get
a crossed module (C,xC},G,d) and, defining di(c;,c;) as ¢; and dy(cy,¢)) as
d5(c;) - ¢y, we get a ( )y-discrete groupoid. [J

We thus get a pair of adjoint functors:

(h
X-Mod &=—= 2-X-Mod

G,
defined by G,(C,G,d)=(Ker d— C—5 G) and (C,-2C, 25 G),=(C,, G, dy),
satisfying the conditions of the basic situation.
More generally,
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ATy Iy

Definition 35 (see for instance [23]). Let us call a crossed n-fold complex, a sequence
62 al

C,— Cpy — - C, > C, — G

of group homomorphisms such that

(1) (Cy,G,d,) is a crossed module;

(2) for 2=k=n, each C, is a Q-module, where Q=G/9,C| and each 9, is a
Q-map;

(3) 9,_,0,=0.

The notion of morphism of crossed n-fold complexes is the natural one. Let
n-X-Mod denote this category.

Proposition 36. The categories n-Grd(Grp) and n-X-Mod are equivalent.

Proof. By induction, and mimicking exactly the proof of Proposition 34. We thus
get the following commutative diagram:

Ny

n-Grd(Grp) n-X-Mod

n

( )n—l Tn—l

Nn 1

(n — 1)-Grd(Grp) (n—1)-X-Mod

n-1

where the functor 7, _, is the truncation of the last element. [

As a consequence, the category n-Grd(Grp/Q) is equivalent to the category
n-X-Mody, whose objects are the sequences of group homomorphisms:

d, 9 aJ
Cn__’ Cnfl T C(1 — G — Q

where the indexed part is a crossed xn-fold complex such that
3 * 3, = O

Now the functor ( ),_,:n-Grd(Grp/Q)— (n—1)-Grd(Grp/Q) is equivalent to
the truncation of the last element, and G,, to the augmentation by the kernel. Thus,
an object of »n-Grd(Grp/Q) having a global ( ), _;-support corresponds to a
sequence which is exact at level (n — 1), and an aspherical object to a sequence which
is exact at any level.

On the other hand, given a left Q-module M, the object of #-X-Mod, correspon-
ding to K, (Q*(M)) is the following:

Id

Let us denote it by K,(M). A left K,(M)-action on an object of rn-X-Modg is
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obviously equivalent to an augmentation of this object by M, the action being
T,_,-principal if and only if this augmentation is a kernel augmentation. Conse-
quently, an (n + 1)-torsor corresponds to a crossed (n+ 1)-fold extension of M by QO
[23], that is, an exact sequence of groups

y I 3 3
O—M-—C,—C,.y ——C, —GC—Q—1

with the following properties:

() (C,,G,0)) is a crossed module;

(2) for 1<k=n, C, is a @-module, and the morphisms d¢ and y are Q-linear.

Consequently the category (n+1)-Tors(Grd/Q, Q*(M)) is equivalent to the cate-
gory OPEXT""!(Q, M) of crossed (n+1)-fold extensions of M by Q, and the
groups H" Y (Grp/Q, Q*(H)) and Opext”"'(Q, M) are isomorphic.
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